Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Stabilization of Streptomyces lividans by Homologous Recombinational Insertion

Abstract

We have developed a system for the introduction and maintenance of novel tandem repeats in the chromosome of Streptomyces lividans 66. This was achieved by introducing, via transformation, Escherichia coli “suicide” vectors carrying manipulated S. lividans DNA fragments. Selection for antibiotic resistance markers carried on such plasmids permitted the isolation and maintenance of mutant strains containing novel tandem repeats formed by the integration into the chromosome of the plasmids, via homologous recombination between plasmid–borne chromosomal sequences and identical sequences on the chromosome. When novel repeats were introduced, and maintained, in regions of the chromosome which become deleted in unstable strains of S. lividans, those deletion events were blocked. Surprisingly, such strains were also 10 to 20–fold more stable than the parent even in the absence of selection. In stable regions of the chromosome, the maintenance of novel repeats had no obvious effect on the deletion events. This strategy could be generally applicable to industrial strains of Streptomyces, where instability is a common problem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berdy, J. 1980. Recent advances in and prospects for antibiotic research. Proc. Biochem. 15: 28–35.

    CAS  Google Scholar 

  2. Ono, H., Hintermann, G., Crameri, R., Wallis, G. and Hütter, R. 1982. Reiterated DNA sequences in a mutant strain of Streptomyces glaucescens and cloning of the sequence in Escherichia coli. Mol. Gen. Genet. 186: 106–110.

    Article  CAS  PubMed  Google Scholar 

  3. Schrempf, H. 1982. Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli. J. Bacteriol. 151: 701–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baltz, R.H. and Stonesifer, J. 1985. Phenotypic changes associated with loss of expression of tylosin biosynthesis and resistance genes in Streptomyces fradiae. J. Antibiotics 38: 1226–1236.

    Article  CAS  Google Scholar 

  5. Demuyter, P., Leblond, P., Decaris, B. and Simonet, J.-M. 1988. Characterisation of two families of spontaneous amplifiable units of DNA in Streptomyces ambofaciens. J. Gen. Microbiol. 134: 2001–2007.

    CAS  PubMed  Google Scholar 

  6. Dary, A., Bourget, N., Simonet, J.-M. and Decaris, B. 1992. The amplification of a specific DNA sequence reversibly prevents spiramycin production in Streptomyces ambofaciens RP181110. Res. Microbiol. 43: 99–112.

    Article  Google Scholar 

  7. Leblond, P., Demuyter, P., Simonet, J.-M. and Decaris, B. 1991. Genetic instability and associated genome plasticity in Streptomyces ambofaciens: PFGE evidence for large alterations in a limited genomic region. J. Bacteriol. 173: 4229–4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altenbuchner, J. and Cullum, J. 1984. DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol. Gen. Genet. 195: 134–138.

    Article  CAS  PubMed  Google Scholar 

  9. Altenbuchner, J. and Cullum, J. 1985. Structure of an amplifiable DNA sequence in Streptomyces lividans 66. Mol. Gen. Genet. 201: 192–195.

    Article  CAS  PubMed  Google Scholar 

  10. Betzler, M., Dyson, P. and Schrempf, H. 1987. Relationship of an unstable argG gene to a 5.7 kb amplifiable DNA sequence in Streptomyces lividans 66. J. Bacteriol. 169: 4804–4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mori, M., Hashiguchi, K.-I., Yoda, K. and Yamasaki, M. 1988. Designed gene amplification on the Bacillus subtilis chromosome. J. Gen. Microbiol. 134: 85–95.

    CAS  PubMed  Google Scholar 

  12. Niaudet, B., Goze, A. and Ehrlich, S.D. 1982. Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning. Gene 19: 277–284.

    Article  CAS  PubMed  Google Scholar 

  13. Altenbuchner, J. and Cullum, J. 1987. Amplification of cloned genes in Streptomyces. Bio/Technology 5: 1328–1329.

    CAS  Google Scholar 

  14. Chater, K.F. and Bruton, C.J. 1983. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene 26: 67–78.

    Article  CAS  PubMed  Google Scholar 

  15. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S. 1977. Construction and characterization of new cloning vehicles, II. A multipurpose cloning system. Gene 2: 95–113.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson, C.J., Ward, M.J. and Hopwood, D.A. 1980. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286: 525–527.

    Article  CAS  PubMed  Google Scholar 

  17. Beck, E., Ludwig, G., Auerswald, E.A., Reiss, B. and Schaller, H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.

    Article  CAS  PubMed  Google Scholar 

  18. Ish-Horowitz, D. and Burke, J.F. 1981. Rapid and efficient cosmid cloning. Nucl. Acids Res. 9: 2989–2998.

    Article  Google Scholar 

  19. Cullum, J., Flett, F., Gravius, B., Hranueli, D., Miyashita, K., Pigac, J., Rauland, U. and Redenbach, M. 1991. Genetics and product formation in Streptomyces. Plenum Press, New York.

  20. Campbell, A.M. 1962. The episomes. Adv. Genet. 11: 101–145.

    Article  Google Scholar 

  21. Rudd, B.A.M. and Hopwood, D.A. 1979. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J. Gen. Microbiol. 114: 35–43.

    Article  CAS  PubMed  Google Scholar 

  22. Edlund, T. and Normark, S. 1981. Recombination between short DNA homologies causes tandem duplication. Nature 292: 269–271.

    Article  CAS  PubMed  Google Scholar 

  23. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. and Schrempf, H., 1985. Genetic Manipulation of Streptomyces–A Laboratory Manual. The John Innes Foundation, Norwich, UK.

  24. Katz, E., Thompson, C.J. and Hopwood, D.A. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J. Gen. Microbiol. 129: 2703–2714.

    CAS  PubMed  Google Scholar 

  25. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  PubMed  Google Scholar 

  26. Gibson, T. 1984. Studies on the Epstein-Barr virus genome. Ph.D.Thesis, Cambridge University, England.

  27. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, P., Flett, F. & Cullum, J. Stabilization of Streptomyces lividans by Homologous Recombinational Insertion. Nat Biotechnol 10, 570–573 (1992). https://doi.org/10.1038/nbt0592-570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0592-570

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing