Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The use of single-nucleotide polymorphism maps in pharmacogenomics

Abstract

Single-nucleotide polymorphisms (SNPs), common variations among the DNA of individuals, are being uncovered and assembled into large SNP databases that promise to enable the dissection of the genetic basis of disease and drug response (i.e., pharmacogenomics). Although great strides have been made in understanding the diversity of the human genome, such as the frequency, distribution, and type of genetic variation that exists, the feasibility of applying this information to uncover useful pharmacogenomic markers is uncertain. The health care industry is clamoring for access to SNP databases for use in research in the hope of revolutionizing the drug development process. As the reality of using SNPs to uncover drug response markers is rarely addressed, this review discusses practical issues, such as patient sample size, SNP density and genome coverage, and data interpretation, that will be important for determining the applicability of pharmacogenomic information to medical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graph demonstrating the effect of varying linkage disequilibrium (D′) on relative risk using data from scenario 3 in Table 1.
Figure 2: Sample sizes required for detecting the association outlined in scenario 6 from Table 1, using an LD mapping approach with varying numbers of SNP markers and varying degrees of LD.

Similar content being viewed by others

References

  1. Brower, V. Genome II: the next frontier. Nat. Biotechnol. 16, 1004 (1998).

    Article  CAS  Google Scholar 

  2. Marshall, E. Drug firms to create public database of genetic mutations. Science 284, 406–407 (1999).

    Article  CAS  Google Scholar 

  3. Venter, J.C. et al. Shotgun sequencing of the human genome. Science. 280, 1540–1542 (1998).

    Article  CAS  Google Scholar 

  4. Marshall, E. ‘Playing chicken’ over gene markers. Science 278, 2046–2048 (1997).

    Article  CAS  Google Scholar 

  5. Hodgson, J. Curagen lays down markers; 120,000 of them. Nat. BIotechnol. 17, 951 (1999).

    Article  CAS  Google Scholar 

  6. Davidson, S. Incyte SNPs up Hexagen for new firm. Nat. Biotechnol. 16, 895 (1998).

    Article  CAS  Google Scholar 

  7. Bertina, R.M. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64–67 (1994).

    Article  CAS  Google Scholar 

  8. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  Google Scholar 

  9. Krynetski, E.Y. & Evans W.E. Pharmacogenetics as a molecular basis for individualized drug therapy: the thiopurine S-methyltransferase paradigm. Pharm. Res. 16, 342–349 (1999).

    Article  CAS  Google Scholar 

  10. Drazen, J.M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat. Genet. 22, 168–170 (1999).

    Article  CAS  Google Scholar 

  11. Poirier, J. et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 12260–12264 (1995).

    Article  CAS  Google Scholar 

  12. Collins, F.S. Positional cloning: let's not call it reverse anymore. Nat. Genet. 1, 3–6 (1992).

    Article  CAS  Google Scholar 

  13. Friedman, T.B. et al. A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nat. Genet. 9, 86–91 (1995).

    Article  CAS  Google Scholar 

  14. Houwen, R.H.J. et al. Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat. Genet. 8, 380–386 (1994).

    Article  CAS  Google Scholar 

  15. Puffenberger, E.G. et al. Identity-by-decent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum. Mol. Genet. 3, 1217–1225 (1994).

    Article  CAS  Google Scholar 

  16. Lai, E., Riley, J., Purvis, I. & Roses, A. A 4-Mb high-density single nucleotide polymorphism-based map around human APOE. Genomics 54, 31–38 (1998).

    Article  CAS  Google Scholar 

  17. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  Google Scholar 

  18. Zubenko, G.S., Hughes, H.B., Stiffler, J.S., Hurtt, M.R. & Kaplan, B.B. A genome survey for novel Alzheimer disease risk loci: results at 10-cM resolution. Genomics. 50, 121–128 (1998).

    Article  CAS  Google Scholar 

  19. Clark, A.G. et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

    Article  CAS  Google Scholar 

  20. Terwilliger, J.D., Zollner, S., Laan, M. & Paabo, S. Mapping genes through the use of linkage disequilbrium generated by genetic drift: ‘drift mapping’ in small populations with no demographic expansion. Hum. Hered. 48, 138–154 (1998).

    Article  CAS  Google Scholar 

  21. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  22. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  23. Koster, T. et al. Venous thrombosis due to poor anticoagulation response to activated protein C: Leiden Thrombophilia Study. Lancet 342, 1503–1506 (1993).

    Article  CAS  Google Scholar 

  24. Idle, J.R. & Smith, R.l. Polymorphisms of oxidation at carbon centers of drugs and their clinical significance. Drug Metab. Rev. 9, 301–317 (1979).

    Article  CAS  Google Scholar 

  25. Hartl, D.l. & Clark, A.G. Principles of population genetics. (Sinauer Associates. Sunderland, MA; 1990).

    Google Scholar 

  26. Huttley, G.A., Smith, M.W., Carrington, M. & O'Brien, S.J. A scan for linkage disequilibrium across the human genome. Genetics 152, 1711–1722 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jorde, L.B. et al. Linkage disequilibrium predicts physical distance in the adenomatous polyposis coli region. Am. J. Hum. Genet. 54, 884–898 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22, 139–144 (1999).

    Article  CAS  Google Scholar 

  29. Lewontin, R.C. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49, 49–67 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cox, N.J. & Bell, G.I. Disease associations: chance, artifact or susceptibility genes? Diabetes 38, 947–950 (1989).

    Article  CAS  Google Scholar 

  31. Osier, M. et al. Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. Am. J. Hum. Genet. 64, 1147–1157 (1999).

    Article  CAS  Google Scholar 

  32. Saiki, R.K., Walsh, P.S., Levenson, C.H. & Erlich, H.A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234 (1989).

    Article  CAS  Google Scholar 

  33. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  Google Scholar 

  34. Orita, M., Iwahana, H., Kanazawa, H., Hayasi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  35. Syvanen, A.C. From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10 (1999).

    Article  CAS  Google Scholar 

  36. Barcellos, L.F. et al. Association mapping of disease loci by use of a pooled DNA genomic screen. Am. J. Hum. Genet. 61, 734–747 (1997).

    Article  CAS  Google Scholar 

  37. Breen, G. et al. Accuracy and sensitivity of DNA pooling with microsatellite repeats using capillary electrophoresis. Mol. Cell. Probes 13, 359–365 (1999).

    Article  CAS  Google Scholar 

  38. Roberts, S.B., MacLean, C.J., Neale, M.C., Eaves, L.J. & Kendler, K.S. Replication of linkage studies of complex traits: an examination of variation in location estimates. Am. J. Hum. Genet. 65, 876–884 (1999).

    Article  CAS  Google Scholar 

  39. Fisher, L. Biostatistics: a methodology for the health sciences. (Wiley Science, New York, NY; 1993).

    Google Scholar 

Download references

Acknowledgements

We wish to especially thank Joanne Meyer and Steve Lewitzky for critical review of the manuscript and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette J. McCarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, J., Hilfiker, R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat Biotechnol 18, 505–508 (2000). https://doi.org/10.1038/75360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing