Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry

Abstract

Matrix-assisted laser desorption ionization time of flight mass spectrometry was used to sequence exons 5 to 8 of the human p53 gene. A single tube procedure was established for target amplification and mass spectrometric (MS) sequencing. The MS sequencing scheme is designed for high throughput and parallel sample processing, and is amenable to full automation. Reliable sequencing data were obtained using fmol sample amounts. The high resolution and accuracy of MS sequencing was demonstrated by direct sequencing of a heterozygous template.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karas, M. & Hillenkamp, F. 1998. Laser desorption ionization of proteins with molecular masses exceeding 10000 Dalton.Anal. Chem. 60: 2299–2301.

    Article  Google Scholar 

  2. Hillenkamp, F., Karas, M., Beavis, R.C., & Chait, B.T. 1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63: 1193A–1203A.

    Article  CAS  Google Scholar 

  3. Nelson, R.W., Thomas, R.M., & Williams, P. 1990. Time-of-flight mass spectrometry of nucleic acids by laser ablation and ionization from frozen aqueous matrix. Rapid Commun. Mass Spectrom. 4: 348–351.

    Article  CAS  Google Scholar 

  4. Spengler, B., Pan, Y., Cotter, R.J., & Kan, L.S. 1990. Molecular weight deter-mination of underivatized oligodeoxyribonuleotides by positive-ion matrix-assisted ultraviolet laser desorption mass spectrometry. Rapid Commun. Mass Spectrom. 4: 99–102.

    Article  CAS  Google Scholar 

  5. Wu, K.J., Steding, A., Becker, C.H., 1993. Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7: 142–146.

    Article  CAS  Google Scholar 

  6. Pieles, U., Zurcher, W., Schar, M., & Moser, H.E. 1993. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucl. Adds Res. 21: 3191–3196.

    Article  CAS  Google Scholar 

  7. Colby, S.M., King, T.B., & Reilly, J.P. 1994. Improving the resolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by exploiting the correlation between ion position and velocity. Rapid Commun. Mass Spectrom. 8: 865–868.

    Article  CAS  Google Scholar 

  8. Vestal, M.L., Juhasz, P., & Martin, S.A. 1995. Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 9: 1044–1050.

    Article  CAS  Google Scholar 

  9. Whittal, R.m., Li, L. 1995. High-resolution matrix-assisted laser desorption/ionization in a linear time-of-flight mass spectrometer. Anal. Chem. 67: 1950–1954.

    Article  CAS  Google Scholar 

  10. Koster, H., Tang, K., Fu, D.-J., van den Boom, D., Smith, C.L., et al. 1996. A strategy for rapid and efficient DMA sequencing by mass spectrometry. Nature Biotechnology. 14: 123–1128.

    Article  Google Scholar 

  11. Tang, K., Taranenko, N.I., Allman, S.L., Chang, L.Y., & Chen, C.H. 1994. Detection of 500-nucleotide DMA by laser desorption mass spectrometry. Rapid Commun. Mass Spectrom. 8: 727–730.

    CAS  Google Scholar 

  12. Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Wfirl, R., & Koster, H. 1996. Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization TOP mass spectrometry. Anal. Biochem 237: 174–181.

    Article  CAS  Google Scholar 

  13. Taranenko, N.I., Matteson, K.J, Chung, C.N., Tang, K., Zhu, Y.F., Chang, L.Y, Allman, S.L et al. 1996. Laser desorption mass spectrometry for point mutation detection Genetic Analysis: Biomo/ecular Engineering. 13: 87–94.

    Article  CAS  Google Scholar 

  14. Liu, Y.-I., Bai, J., Zhu, Y., Liang, X., Siemieniak, D., Venta, P. et al. 1995. Rapid screening of genetic polymorphisms using buccal cell DMA with detection by matrix-assisted laser desorption/ionization mass spectrometry Rapid Commun. Mass Spectrom. 9: 735–743.

    Article  CAS  Google Scholar 

  15. Haff, L.A., & Smirnov, I.P. 1997. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry Genome Res. 7: 378–388.

    Article  CAS  Google Scholar 

  16. Little, D.P., Braun, A., Darnhofer-Demar, B., & Koster, H. 1997. Apolipoprotein E polymorphism identification using temperature cycled primer oligo base exten-sion and mass spectrometry. Eur. J. Clin. Chem. Clin. Biochem. 35: 545–548.

    CAS  Google Scholar 

  17. Braun, A., Little, D.P., & Koster, H. 1997. Detecting CFTR gene mutations using primer oligo base extension and mass spectrometry. Clin. Chem. 43: 1151–1158.

    CAS  Google Scholar 

  18. Little, D.P., Braun, A., Darnhofer-Demar, B., Friling, A., Li, Y., Mclver, R. et al. 1997. Rapid detection of RET proto-oncogene codon 634 mutations using mass spectrometry. J. Mol. Med. 75: 745–750.

    Article  CAS  Google Scholar 

  19. Higgins, G.S., Little, D.P., Koster, H. 1997. Competitive oligonucleotide single base extension combined with mass spectrometric detection for mutation screening. Biotechniques. 23: 710–714.

    Article  CAS  Google Scholar 

  20. Smirnov, I.P., Roskey, M.T., Juhasz, P., Takach, E.J., Martin, S.A., & Haff, L.A. 1996. Sequencing oligonucleotides by exonuclease digestion and delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spec-trometry. Anal. Biochem. 238: 19–25.

    Article  CAS  Google Scholar 

  21. Roskey, I.P., Juhasz, P., Smirnov, I.P., Takach, E.J., Martin, S.A., & Haff, L.A. 1996. DNA sequencing by delayed extraction matrix-assisted laser desorption/ionization time of flight mass spectrometry. Prac. Wat/. Acad. Sci. 93: 4724–4729.

    Article  CAS  Google Scholar 

  22. Mouradian, A., Rank, D.R., & Smith, L.M. 1996. Analyzing sequencing reactions from bacteriophage M13 by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 10: 1475–1478.

    CAS  Google Scholar 

  23. Monforte, J.A., & Becker, C.H. 1997. High throughput DNA analysis by time-of-flight mass spectrometry. Nat. Med 3: 360–362.

    Article  CAS  Google Scholar 

  24. Jurinke, C., Zollner, B. Feucht, H.-H, Jacob, A., Kirchhubel, J., Luchow, A. et al. 1996. Detection of hepatitis B virus DA in serum samples via nested PCR and MALDI-TOF mass spectrometry. Genetic Analysis: Biomolecular Engineering 13: 67–71.

    Article  CAS  Google Scholar 

  25. Hurst, G.B., Doktycz, M.J., Vass, A.A., & Buchanan, M.V. 1996. Detection of bacterial DNA polymerase chain reaction products by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 10: 377–382.

    Article  CAS  Google Scholar 

  26. Sidransky, D., & Hollstein, M. 1996. Clinical implications of the p53 gene. Annual Review of Medicine. 47: 285–301.

    Article  CAS  Google Scholar 

  27. Hainaut, P., Soussi, T., Shomer, B., Hollstein, M. Greenblatt, . Hovig, E. et al. 1997. Database of p53 gene somatic mutations in human tumor and cell lines: updated compilation and future prospects. Nucl. Acids Res. 25: 151–157.

    Article  CAS  Google Scholar 

  28. Goh, H.S., Yao, J., & Smith, D.R. 1995. p53 point mutation and survival in colorectal cancer patients. Cancer Res. 55: 5217–5221.

    CAS  PubMed  Google Scholar 

  29. Fu, D.-J., Broude, N.E., Koster, H., Smith, C.L., & Cantor, C.R. 1996. Efficient preparation of short DNA sequence ladders potentially suitable for MALDI-TOF DNA sequencing Genetic Analysis: Biomolecuiar Engineering. 12: 137–142.

    Article  CAS  Google Scholar 

  30. de la Calle-Martin, O., Fabregat, V., Fabregat, M., Soler, J., & Vives, J., & Yague, J. 1990. Ace II polymorphism of the p53 gene. Nucl. Acids Res. 18: 4963–4963.

    PubMed  Google Scholar 

  31. Little, D.p., Cornish, T.J., O'Donnell, M.J., Braun, A., Cotter, R.J., & Koster, H., 1997. MALDI on a chip: Analysis of arrays of low-to sub-femtomole quantities of synthetic oligonucleotides and DNA diagnostic products dispensed by a piezo-electric pipette. Anal. Chem. 69: 4540–4546.

    Article  CAS  Google Scholar 

  32. Sinha, N.D., Biernat, J., & O'Koster, H. 1983. B-Cyanoethyl N, N-dialkylamino/N-morpholino monochloro phosphoamidites: new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Letters. 24: 5843–5846.

    Article  CAS  Google Scholar 

  33. Braun, A., Maier, E., Kammerer, S., Muller, B., amp; Roscher, A.A. 1996. A novel sequence polymorphism in the promoter region of the human B2-bradykinin receptor gene. Hum. Genet. 97: 688–689.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Jing Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, DJ., Tang, K., Braun, A. et al. Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry. Nat Biotechnol 16, 381–384 (1998). https://doi.org/10.1038/nbt0498-381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0498-381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing