Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Potential Shuttle Vectors Based on the Methanogen Plasmid pME2001

Abstract

Methane is produced by anaerobic archaebacteria known as methanogens. Currently the only available plasmid from a methanogen is pME2001. We have incorporated pME2001 into plasmids which should be capable of replication in a range of microbial host species. Plasmid pET2411, a recombinant plasmid formed by joining pBR322 to pME2001, directs the synthesis of pME2001 encoded polypeptides in Escherichia coli but cannot replicate in E. coli in the absence of E. coli DNA polymerase I.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klass, D.L. 1984. Methane from anaerobic fermentation. Science 223: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  2. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R. and Wolfe, R.S. 1979. Methanogens: re-evaluation of a unique biological group. Microbiol. Rev. 43: 260–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeikus, J.G. 1982. Metabolism of one-carbon compounds by chemotropic anaerobes. Adv. Microbiol. Physiol. 24: 199–251.

    Google Scholar 

  4. Vogels, G.D. and Visser, C.M. 1983. Interconnection of methanogenic and acetogenic pathways. FEMS Microbiol. Lett. 20: 291–297.

    Article  Google Scholar 

  5. Daniels, L., Sparling, R. and Sprott, G.D. 1984. The bioenergetics of methanogenesis. Biochem. Biophys. Acta. 768: 113–163.

    CAS  PubMed  Google Scholar 

  6. Smith, M.R. and Mah, R.A. 1981. 2-Bromoethanesulfonate: A selective agent for isolating resistant Methanosarcina mutants. Curr. Microbiol. 6: 321–326.

    Article  CAS  Google Scholar 

  7. Kiener, A., Holliger, C. and Leisinger, T. 1984. Analogue-resistant and auxotrophic mutants of Methanobacterium thermoautotrophicum. Arch. Microbiol.: In press.

  8. Reeve, J.N., Trun, N.J. and Hamilton, P.T. 1982. Beginning genetics with methanogens; p. 233–244. In: Genetic Engineering of Micro-organisms for Chemicals. Hollaender, A., DeMoss, R. D., Kaplin, S., Konisky, J., Savage, D., and Wolfe, R. S. (eds.), Plenum Press, New York, N.Y.

    Chapter  Google Scholar 

  9. Beckler, G.S., Hook, L.A. and Reeve, J.N. 1984. Chloramphenicol acetyltransferase should not provide methanogens with resistance to chloramphenicol. Appl. Envir. Microbiol. 47: 868–869.

    CAS  Google Scholar 

  10. Hamilton, P.T. and Reeve, J.N. 1984. Cloning and expression of archaebacterial DNA from methanogens in Escherichia coli, p. 291–307. In: Microbial Chemoautotrophy. Strohl, W. R. and Tuovinen, O. H. (eds.), Ohio State University Press. Columbus, OH.

    Google Scholar 

  11. Wood, A.G., Redborg, A.H., Cue, D.R., Whitman, W.B. and Konisky, J. 1983. Complementation of argG and hisA mutations of Escherichia coli by DNA cloned from the archaebacterium Methanococcus voltae. J. Bacteriol. 156 19–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris, C.J. and Reeve, J.N. 1984. Functional expression of an archaebacterial gene from the methanogen Methanosarcina barkeri in Escherichia coli and Bacillus subtilis, p. 205–209. In: Microbial Growth on Cl Compounds. Crawford, R. L. and Hanson, R. S. (eds), A.S.M. Washington, DC.

    Google Scholar 

  13. Meile, L., Kiener, A. and Leisinger, T. 1983. A plasmid in the archaebacterium Methanobacterium thermoautotrophicum. Mol. Gen. Genet. 191: 480–484.

    Article  CAS  PubMed  Google Scholar 

  14. Baresi, L. and Bertani, G. 1984. Isolation of a bacteriophage for a methanogenic bacterium. Abs. 1984 Annual Meeting American Society for Microbiology, p. 133.

  15. Bagdasarian, M.M., Amann, E.A., Lurz, R., Ruckert, B. and Bagdasarian, M. 1983. Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled expression vectors. Gene 26: 273–282.

    Article  CAS  PubMed  Google Scholar 

  16. Bolivar, F., Rodriguez, R.L., Green, P.J., Betlach, M.V., Heynecker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S. 1977. Construction and characterization of new cloning vehicles II. A multipurpose cloning system. Gene 2: 95–113.

    Article  CAS  PubMed  Google Scholar 

  17. Stinchcomb, D.T., Thomas, M., Kelly, J., Selker, E. and Davis, R.W. 1980. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. U.S.A. 77: 4559–4563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goze, A. and Ehrlich, S.D. 1980. Replication of plasmids from Staphylococcus aureus in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 77: 7333–7337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goursot, R., Goze, A., Niaudet, B. and Ehrlich, S.D. 1982. Plasmids from Staphylococcus aureus replicate in yeast Saccharomyces cerevisiae. Nature. 298: 488–489.

    Article  CAS  PubMed  Google Scholar 

  20. Jarsch, M., Altenbuchner, J. and Böck, A. 1983. Physical organization of the genes for ribosomal RNA in Methanococcus vannielii. Mol. Gen. Genet. 189: 41–47.

    Article  CAS  Google Scholar 

  21. Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Article  CAS  PubMed  Google Scholar 

  22. Timmis, K.T., Cabello, F. and Cohen, S.N. 1978. Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. Mol. Gen. Genet. 162: 12–137.

    Article  Google Scholar 

  23. Reeve, J.N. 1984. Synthesis of bacteriophage and plasmid-encoded polypeptides in minicells, p. 212–223. In: Advanced Molecular Genetics. Pühler, A. and Timmis, K. N. (eds.), Springer-Verlag., Berlin, W. Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meile, L., Reeve, J. Potential Shuttle Vectors Based on the Methanogen Plasmid pME2001. Nat Biotechnol 3, 69–72 (1985). https://doi.org/10.1038/nbt0185-69

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0185-69

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing