Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical detection of liquid-state NMR

Abstract

Nuclear magnetic resonance (NMR) in liquids and solids is primarily detected by recording the net dipolar magnetic field outside the spin-polarized sample. But the recorded bulk magnetic field itself provides only limited spatial or structural information about the sample. Most NMR applications rely therefore on more elaborate techniques such as magnetic field gradient encoding1 or spin correlation spectroscopy2, which enable spatially resolved imaging and molecular structure analysis, respectively. Here we demonstrate a fundamentally different and intrinsically information-richer modality of detecting NMR, based on the rotation of the polarization of a laser beam by the nuclear spins in a liquid sample. Optical NMR detection has in fact a long history in atomic vapours with narrow resonance lines3,4, but has so far only been applied to highly specialized condensed matter systems such as quantum dots5. It has been predicted6 that laser illumination can shift NMR frequencies and thus aid detection, but the effect is very small and has never been observed. In contrast, our measurements on water and liquid 129Xe show that the complementary effect—the rotation of light polarization by nuclear spins—is readily measurable, and that it is enhanced dramatically in samples containing heavy nuclei. This approach to optical NMR detection should allow correlated optical and NMR spectroscopy on complex molecules, and continuous two-dimensional imaging of nuclear magnetization with spatial resolution limited only by light diffraction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of nuclear-spin-induced optical rotation in liquid Xe.
Figure 2: Detection of nuclear-spin-induced optical rotation in water.
Figure 3: Dependence of optical rotation on laser wavelength.

Similar content being viewed by others

References

  1. Lauterbur, P. C. Image formation by induced local interactions—examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Article  ADS  CAS  Google Scholar 

  2. Aue, W. P., Bartholdi, E. & Ernst, R. R. Two-dimensional spectroscopy—application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976)

    Article  ADS  CAS  Google Scholar 

  3. Manuel, J. & Cohen-Tannoudji, C. Optical detection of magnetic resonance by modulation of paramagnetic Faraday effect transverse to Larmor frequency. Compt. Rend. 257, 413–416 (1963)

    CAS  Google Scholar 

  4. Romalis, M. V., Griffith, W. C., Jacobs, J. P. & Fortson, E. N. New limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett. 86, 2505–2508 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Kikkawa, J. M. & Awschalom, D. D. All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Buckingham, A. D. & Parlett, L. C. High-resolution nuclear magnetic resonance spectroscopy in a circularly polarized laser beam. Science 264, 1748–1750 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Evans, M. W. Optical phase conjugation in nuclear magnetic resonance: Laser NMR spectroscopy. J. Phys. Chem. 95, 2256–2260 (1991)

    Article  CAS  Google Scholar 

  8. Warren, W. S., Mayr, S., Goswami, D. & West, A. P. Jr Laser-enhanced NMR spectroscopy. Science 255, 1683–1685 (1992)

    Article  ADS  CAS  Google Scholar 

  9. Warren, W. S., Goswami, D. & Mayr, S. Laser enhanced NMR spectroscopy, revisited. Mol. Phys. 93, 371–375 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Harris, R. A. & Tinoco, I. Laser-perturbed nuclear magnetic resonance spectroscopy and the conservation of parity. J. Chem. Phys. 101, 9289–9294 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Buckingham, A. D. & Parlett, L. C. The effect of circularly polarized light on NMR spectra. Mol. Phys. 91, 805–813 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Jaszuński, M. & Rizzo, A. A study of the effect of circularly polarized light on NMR spectra and related properties of CS2 . Mol. Phys. 96, 855–861 (1999)

    ADS  Google Scholar 

  13. Li, L., He, T., Chen, D., Wang, X. & Liu, F.-C. Laser-induced NMR shift for Hg199 atom. J. Phys. Chem. A 102, 10385–10390 (1998)

    Article  CAS  Google Scholar 

  14. Romero, R. H. & Vaara, J. Laser-induced splittings in the nuclear magnetic resonance spectra of the rare gas atoms. Chem. Phys. Lett. 400, 226–230 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Van der Ziel, P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965)

    Article  ADS  CAS  Google Scholar 

  16. Ledbetter, M. P. & Romalis, M. V. Nonlinear effects from dipolar interactions in hyperpolarized liquid 129Xe. Phys. Rev. Lett. 89, 287601 (2002)

    Article  CAS  Google Scholar 

  17. Happer, W. & Mathur, B. S. Effective operator formalism in optical pumping. Phys. Rev. 163, 12–25 (1967)

    Article  ADS  CAS  Google Scholar 

  18. Buckingham, A. D. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys. 12, 107–142 (1967)

    CAS  Google Scholar 

  19. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, New York, 1982)

    Google Scholar 

  20. Driehuys, B. et al. High-volume production of laser-polarized 129Xe. Appl. Phys. Lett. 69, 1668–1670 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Zavattini, E. et al. Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 96, 110406 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Ingersoll, L. R. & Liebenberg, D. H. Faraday effect in gases and vapors. II. J. Opt. Soc. Am. 46, 538–542 (1956)

    Article  ADS  CAS  Google Scholar 

  23. Luc-Koenig, E. A priori study of the influence of relativistic effects on the hyperfine structure of 129Xe and 131Xe. J. Phys. E 33, 847–852 (1972)

    CAS  Google Scholar 

  24. Yoshino, K. & Freeman, D. E. Absorption spectrum of xenon in the vacuum-ultraviolet region. J. Opt. Soc. Am. B 2, 1268–1274 (1985)

    Article  ADS  CAS  Google Scholar 

  25. Schaefer, S. R. et al. Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms. Phys. Rev. A 39, 5613–5623 (1989)

    Article  ADS  CAS  Google Scholar 

  26. Xu, S., Sha, G. & Xie, J. Cavity ring-down spectroscopy in the liquid phase. Rev. Sci. Instrum. 73, 255–258 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Fini, J. M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 15, 1120–1128 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Cox, F. M., Argyros, A. & Large, M. C. J. Liquid-filled hollow core microstructured polymer optical fiber. Opt. Expr. 14, 4135–4140 (2006)

    Article  ADS  CAS  Google Scholar 

  29. Maystre, F. & Bertholds, A. Magneto-optic current sensor using a helical-fiber Fabry-Perot resonator. Opt. Lett. 14, 587–589 (1989)

    Article  ADS  CAS  Google Scholar 

  30. Olson, D. L., Peck, T. L., Webb, A. G., Magin, R. L. & Sweedler, J. V. High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270, 1967–1970 (1995)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US DOE and the US NSF. We thank W. Happer's group for use of the 9 T superconducting magnet and S. Smullin for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Romalis.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savukov, I., Lee, SK. & Romalis, M. Optical detection of liquid-state NMR. Nature 442, 1021–1024 (2006). https://doi.org/10.1038/nature05088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05088

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing