Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core

Abstract

The nature of the stable phase of iron in the Earth's solid inner core is still highly controversial. Laboratory experiments1 suggest the possibility of an uncharacterized phase transformation in iron at core conditions and seismological observations2,3,4 have indicated the possible presence of complex, inner-core layering. Theoretical studies5,6 currently suggest that the hexagonal close packed (h.c.p.) phase of iron is stable at core pressures and that the body centred cubic (b.c.c.) phase of iron becomes elastically unstable at high pressure. In other h.c.p. metals, however, a high-pressure b.c.c. form has been found to become stabilized at high temperature. We report here a quantum mechanical study of b.c.c.-iron able to model its behaviour at core temperatures as well as pressures, using ab initio molecular dynamics free-energy calculations. We find that b.c.c.-iron indeed becomes entropically stabilized at core temperatures, but in its pure state h.c.p.-iron still remains thermodynamically more favourable. The inner core, however, is not pure iron, and our calculations indicate that the b.c.c. phase will be stabilized with respect to the h.c.p. phase by sulphur or silicon impurities in the core. Consequently, a b.c.c.-structured alloy may be a strong candidate for explaining the observed seismic complexity of the inner core2,3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The calculated phonon dispersion curves for b.c.c.-Fe at nine different volumes (corresponding to 40–350 GPa).
Figure 2: The calculated stress tensors as a function of simulation time (upper row) and position correlation functions (lower row) for a 64-atom cubic supercell at different temperatures.

Similar content being viewed by others

References

  1. Brown, M. J. The equation of state of iron to 450 GPa: Another high-pressure solid phase? Geophys. Res. Lett. 28, 4339–4342 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Song, X. D. & Helmberger, D. V. Seismic evidence for an inner core transition zone. Science 282, 924–927 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Beghein, C. & Trampert, J. Robust normal mode constraints on inner-core anisotropy from model space search. Science 299, 552–555 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Ishii, M. & Dziewonski, A. M. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl Acad. Sci. USA 99, 14026–14030 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Steinle-Neumann, G., Stixrude, L., Cohen, R. E. & Gülseren, O. Elasticity of iron at the temperature of the Earth's inner core. Nature 413, 57–60 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Vočadlo, L., Brodholt, J., Alfè, D., Gillan, M. J. & Price, G. D. Ab initio free energy calculations on the polymorphs of iron at core conditions. Phys. Earth Planet. Inter. 117, 123–137 (2000)

    Article  ADS  Google Scholar 

  7. Shen, G. Y., Mao, H. K., Hemley, R. J., Duffy, T. S. & Rivers, M. L. Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373–376 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Ross, M., Young, D. A. & Grover, R. Theory of the iron phase diagram at Earth core conditions. J. Geophys. Res. 95, 21713–21716 (1990)

    Article  ADS  CAS  Google Scholar 

  9. Matsui, M. & Anderson, O. L. The case for a body-centred-cubic phase (αv) for iron at inner core conditions. Phys. Earth Planet Inter. 103, 55–62 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Petry, W. Dynamical precursors of martensitic transitions. J. Phys. IV 5, C2-15–C2-28 (1995)

    Google Scholar 

  11. Trampenau, J. et al. Phonon dispersion of the bcc phase of group-IV metals. III. bcc hafnium. Phys. Rev. B 43, 10963–10969 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Söderlind, P., Moriarty, J. A. & Willis, J. M. First-principles theory of iron up to Earth-core pressures: structural, vibrational and elastic properties. Phys. Rev. B 53, 14063–14072 (1996)

    Article  ADS  Google Scholar 

  13. Stixrude, L. & Cohen, R. E. Constraints on the crystalline structure of the inner core: mechanical instability of BCC iron at high pressures. Geophys. Res. Lett. 22, 125–128 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Moriarty, J. A. in High Pressure Science and Technology 1993 (eds Schmidt, S. C., Shaner, J. W., Samara, G. A. & Ross, M.) 233–236 (AIP Press, New York, 1994)

    Google Scholar 

  15. Mao, H. K. et al. Phonon density of states of iron up to 153 gigapascals. Science 292, 914–916 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, Y. & Perdew, J. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44, 13298–13307 (1991)

    Article  ADS  CAS  Google Scholar 

  18. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  20. Alfè, D., Kresse, G. & Gillan, M. J. Structure and dynamics of liquid iron under Earth's core conditions. Phys. Rev. B 61, 132–142 (2000)

    Article  ADS  Google Scholar 

  21. Alfè, D., Price, G. D. & Gillan, M. J. Thermodynamics of hexagonal-close-packed iron under Earth's core conditions. Phys. Rev. B 64, 045123 (2001)

    Article  ADS  Google Scholar 

  22. Grad, G. B. et al. Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: ab initio study of Y, Zr, Nb and Mo. Phys. Rev. B 62, 12743–12753 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Alfè, D., Gillan, M. J. & Price, G. D. The melting curve of iron at Earth's core pressures from ab initio calculations. Nature 401, 462–464 (1999)

    Article  ADS  Google Scholar 

  24. Alfè, D., Price, G. D. & Gillan, M. J. Iron under Earth's core conditions: liquid-state thermodynamics and high pressure melting curve from ab initio calculations. Phys. Rev. B 65, 165118 (2002)

    Article  ADS  Google Scholar 

  25. Vočadlo, L. & Alfè, D. Ab initio melting curve of the fcc phase of aluminium. Phys. Rev. B 65, 214105 (2002)

    Article  ADS  Google Scholar 

  26. Lin, J.-F., Heinz, D. L., Campbell, A. J., Devine, J. M. & Shen, G. Iron-silicon alloy in Earth's core? Science 295, 313–315 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Alfè, D., Price, G. D. & Gillan, M. J. Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data. Earth Planet. Sci. Lett. 195, 91–98 (2002)

    Article  ADS  Google Scholar 

  28. Alfè, D., Price, G. D. & Gillan, M. J. Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core. J. Chem. Phys. 116, 7127–7136 (2002)

    Article  ADS  Google Scholar 

  29. Alfè, D., Gillan, M. J. & Price, G. D. Constraints on the composition of the Earth's core from ab-initio calculations. Nature 405, 172–175 (2000)

    Article  ADS  Google Scholar 

  30. Dobson, D. P., Vočadlo, L. & Wood, I. G. A new high-pressure phase of FeSi. Am. Mineral. 87, 784–787 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

L.V. and D.A. thank the Royal Society for their continued support through the University Fellowship scheme. We also thank NERC for providing computing facilities via grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidunka Vočadlo.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vočadlo, L., Alfè, D., Gillan, M. et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core. Nature 424, 536–539 (2003). https://doi.org/10.1038/nature01829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01829

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing