Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo

Abstract

Chronic lymphocytic leukemia (CLL) is characterized by apoptosis resistance and a dysfunctional immune system. Previous reports suggested a potential role of myeloid cells in mediating these defects. However, the composition and function of CLL-associated myeloid cells have not been thoroughly investigated in vivo. Using the -TCL1 mouse model, we observed severe skewing of myeloid cell populations with CLL development. Monocytes and M2-like macrophages infiltrated the peritoneal cavity of leukemic mice. Monocytes also accumulated in the spleen in a CCR2-dependent manner, and were severely skewed toward Ly6Clow patrolling or nonclassical phenotype. In addition, the percentage of MHC-IIhi dendritic cells and macrophages significantly dropped in the spleen. Gene expression profiling of CLL-associated monocytes revealed aberrantly high PD-L1 expression and secretion of multiple inflammatory and immunosuppressive cytokines like interleukin-10, tumor necrosis factor-α and CXCL9. In vivo myeloid cell depletion using liposomal Clodronate resulted in a significant control of CLL development accompanied by a pronounced repair of innate immune cell phenotypes and a partial resolution of systemic inflammation. In addition, CLL-associated skewing of T cells toward antigen-experienced phenotypes was repaired. The presented data suggest that targeting nonmalignant myeloid cells might serve as a novel immunotherapeutical strategy for CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10: 37–50.

    Article  CAS  PubMed  Google Scholar 

  2. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell'Aquila M, Kipps TJ . Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96: 2655–2663.

    CAS  PubMed  Google Scholar 

  4. Seiffert M, Schulz A, Ohl S, Döhner H, Stilgenbauer S, Lichter P . Soluble CD14 is a novel monocyte-derived survival factor for chronic lymphocytic leukemia cells, which is induced by CLL cells in vitro, and present at abnormally high levels in vivo. Blood 2010; 116: 4223–4230, ..

    Article  CAS  PubMed  Google Scholar 

  5. Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M . Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica 2011; 96: 408–416.

    Article  CAS  PubMed  Google Scholar 

  6. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013; 153: 362–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007; 204: 3037–3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi C, Pamer EG . Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11: 762–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richards D, Hettinger J, Feuerer M . Monocytes and macrophages in cancer: development and functions. Cancer Microenviron 2013; 6: 179–191.

    Article  CAS  PubMed  Google Scholar 

  10. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 2010; 70: 5728–5739.

    Article  CAS  PubMed  Google Scholar 

  11. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K et al. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344: 921–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riches JC, Gribben JG . Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am 2013; 27: 207–235.

    Article  PubMed  Google Scholar 

  14. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood 2015; 126: 203–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ysebaert L, Fournie JJ . Genomic and phenotypic characterization of nurse-like cells that promote drug resistance in chronic lymphocytic leukemia. Leuk Lymphoma 2011; 52: 1404–1406.

    Article  PubMed  Google Scholar 

  16. Gustafson MP, Abraham RS, Lin Y, Wu W, Gastineau DA, Zent CS et al. Association of an increased frequency of CD14+ HLA-DR lo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol 2012; 156: 674–676.

    Article  CAS  PubMed  Google Scholar 

  17. Jitschin R, Braun M, Buttner M, Dettmer-Wilde K, Bricks J, Berger J et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 2014; 124: 750–760.

    Article  CAS  PubMed  Google Scholar 

  18. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2010; 117: 563–574.

    Article  PubMed  Google Scholar 

  19. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia 2011; 25: 1452–1458.

    Article  PubMed  Google Scholar 

  21. Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci USA 2009; 106: 6250–6255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 1997; 94: 12053–12058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gautier EL, Ivanov S, Lesnik P, Randolph GJ . Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood 2013; 122: 2714–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM et al. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci USA 2010; 107: 2568–2573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sica A, Mantovani A . Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122: 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao F, Ali J, Greene T, Muller WA . Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J Exp Med 1997; 185: 1349–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA . Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 1995; 182: 1337–1343.

    Article  CAS  PubMed  Google Scholar 

  29. Steidl U, Haas R, Kronenwett R . Intercellular adhesion molecular 1 on monocytes mediates adhesion as well as trans-endothelial migration and can be downregulated using antisense oligonucleotides. Ann Hematol 2000; 79: 414–423.

    Article  CAS  PubMed  Google Scholar 

  30. Zanesi N, Aqeilan R, Drusco A, Kaou M, Sevignani C, Costinean S et al. Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res 2006; 66: 915–920.

    Article  CAS  PubMed  Google Scholar 

  31. Burger JA, Quiroga MP, Hartmann E, Bürkle A, Wierda WG, Keating MJ et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009; 113: 3050–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sallusto F, Lanzavecchia A, Mackay CR . Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 1998; 19: 568–574.

    Article  CAS  PubMed  Google Scholar 

  33. Griffith JW, Sokol CL, Luster AD . Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32: 659–702.

    Article  CAS  PubMed  Google Scholar 

  34. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA . Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006; 95: 272–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song K, Herzog BH, Sheng M, Fu J, McDaniel JM, Chen H et al. Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma. Cancer Res 2013; 73: 7254–7264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172: 4410–4417.

    Article  PubMed  Google Scholar 

  37. Chen SS, Batliwalla F, Holodick NE, Yan XJ, Yancopoulos S, Croce CM et al. Autoantigen can promote progression to a more aggressive TCL1 leukemia by selecting variants with enhanced B-cell receptor signaling. Proc Natl Acad Sci USA 2013; 110: E1500–E1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maffei R, Bulgarelli J, Fiorcari S, Bertoncelli L, Martinelli S, Guarnotta C et al. The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 2013; 98: 1115–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia L, Clear A, Liu FT, Matthews J, Uddin N, McCarthy A et al. Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia. Blood 2014; 123: 1709–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coscia M, Pantaleoni F, Riganti C, Vitale C, Rigoni M, Peola S et al. IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia 2011; 25: 828–837.

    Article  CAS  PubMed  Google Scholar 

  42. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood 2012; 119: 2981–2990.

    Article  CAS  PubMed  Google Scholar 

  43. Stall AM, Farinas MC, Tarlinton DM, Lalor PA, Herzenberg LA, Strober S et al. Ly-1 B-cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand Black-related) animals. Proc Natl Acad Sci USA 1988; 85: 7312–7316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA . Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013; 13: 759–771.

    Article  CAS  PubMed  Google Scholar 

  45. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013; 38: 79–91.

    Article  CAS  PubMed  Google Scholar 

  46. Perrot I, Blanchard D, Freymond N, Isaac S, Guibert B, Pacheco Y et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 2007; 178: 2763–2769.

    Article  CAS  PubMed  Google Scholar 

  47. Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 2012; 209: 495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saulep-Easton D, Vincent FB, Le Page M, Wei A, Ting SB, Croce CM et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia 2014; 28: 2005–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wherry EJ . T cell exhaustion. Nat Immunol 2011; 12: 492–499.

    Article  CAS  PubMed  Google Scholar 

  51. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013; 121: 1612–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kocher T, Asslaber D, Zaborsky N, Flenady S, Denk U, Reinthaler P et al. CD4+ T cells, but not non-classical monocytes, are dispensable for the development of chronic lymphocytic leukemia in the TCL1-tg murine model. Leukemia e-pub ahead of print 2 November 2015; doi:10.1038/leu.2015.307.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Allavena P, Signorelli M, Chieppa M, Erba E, Bianchi G, Marchesi F et al. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 2005; 65: 2964–2971.

    Article  CAS  PubMed  Google Scholar 

  54. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al. CSF-1 R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19: 1264–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 2014; 26: 623–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med 2014; 370: 2286–2294.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shaun Miller at Barts Cancer Institute, Nirojah Vijitha at University Clinic of Essen and the microarray unit of the DKFZ Genomics and Proteomics Core Facility for providing valuable technical assistance. We also thank Dr Markus Feuerer and Dr Jan Hettinger for the fruitful discussions. This study was supported by the Helmholtz Virtual Institute ‘Understanding and overcoming resistance to apoptosis and therapy in leukemia’, by the German Cancer Aid, Grant no. 112069, and by the German José Carreras Foundation, Grant no. R12/27 and R14/23. NZ was supported by the Austrian FWF Firnberg-Grant T 516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Seiffert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, B., McClanahan, F., Yazdanparast, H. et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia 30, 570–579 (2016). https://doi.org/10.1038/leu.2015.305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.305

This article is cited by

Search

Quick links