Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Normal Hemopoiesis

The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains

Abstract

Ubiquitination plays a major role in many aspects of hematopoiesis. Alterations in ubiquitination have been implicated in hematological cancer. The ubiquitin ligase Triad1 controls the proliferation of myeloid cells. Here, we show that two RING (really interesting new gene) domains in Triad1 differentially bind ubiquitin-conjugating enzymes, UbcH7 and Ubc13. UbcH7 and Ubc13 are known to catalyze the formation of different poly-ubiquitin chains. These chains mark proteins for proteasomal degradation or serve crucial non-proteolytic functions, respectively. In line with the dual Ubc interactions, we observed that Triad1 catalyzes the formation of both types of ubiquitin chains. The biological relevance of this finding was studied by testing Triad1 mutants in myeloid clonogenic assays. Full-length Triad1 and three mutants lacking conserved domains inhibited myeloid colony formation by over 50%. Strikingly, deletion of either RING finger completely abrogated the inhibitory effect of Triad1 in clonogenic growth. We conclude that Triad1 exhibits dual ubiquitin ligase activity and that both of its RING domains are crucial to inhibit myeloid cell proliferation. The differential interaction of the RINGs with Ubcs strongly suggests that the ubiquitination mediated through UbcH7 as well as Ubc13 plays a major role in myelopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fang S, Weissman AM . A field guide to ubiquitylation. Cell Mol Life Sci 2004; 61: 1546–1561.

    Article  CAS  PubMed  Google Scholar 

  2. Marteijn JA, Jansen JH, van der Reijden BA . Ubiquitylation in normal and malignant hematopoiesis: novel therapeutic targets. Leukemia 2006; 20: 1511–1518.

    Article  CAS  PubMed  Google Scholar 

  3. Pastore Y, Jedlickova K, Guan Y, Liu E, Fahner J, Hasle H et al. Mutations of von Hippel–Lindau tumor-suppressor gene and congenital polycythemia. Am J Hum Genet 2003; 73: 412–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D'Andrea AD, Grompe M . The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 2003; 3: 23–34.

    Article  CAS  PubMed  Google Scholar 

  5. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M . The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993; 82: 2617–2623.

    CAS  PubMed  Google Scholar 

  6. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 2007; 110: 1022–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng S, Xu Z, Lipkowitz S, Longley JB . Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood 2005; 105: 226–232.

    Article  CAS  PubMed  Google Scholar 

  8. Glickman MH, Ciechanover A . The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82: 373–428.

    Article  CAS  PubMed  Google Scholar 

  9. Marteijn JA, van Emst L, Erpelinck-Verschueren CA, Nikoloski G, Menke A, de Witte T et al. The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells. Blood 2005; 106: 4114–4123.

    Article  CAS  PubMed  Google Scholar 

  10. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM . RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96: 11364–11369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361.

    Article  CAS  PubMed  Google Scholar 

  12. Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C . Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol 2006; 13: 915–920.

    Article  CAS  PubMed  Google Scholar 

  13. Sun L, Chen ZJ . The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 2004; 2: 119–126.

    Article  Google Scholar 

  14. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S . RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419: 135–141.

    Article  CAS  PubMed  Google Scholar 

  15. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD . Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat Cell Biol 2006; 8: 398–406.

    Article  CAS  PubMed  Google Scholar 

  16. Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A . The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell 2006; 24: 701–711.

    Article  CAS  PubMed  Google Scholar 

  17. Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, Skowyra D et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 2007; 282: 17375–17386.

    Article  CAS  PubMed  Google Scholar 

  18. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21: 921–926.

    Article  CAS  PubMed  Google Scholar 

  19. Marteijn JA, van der Meer LT, van Emst L, van RS, Wissink W, de Witte T et al. Gfi1 ubiquitination and proteasomal degradation is inhibited by the ubiquitin ligase Triad1. Blood 2007; 110: 3128–3135.

    Article  CAS  PubMed  Google Scholar 

  20. Nigten J, Breems-de Ridder MC, Erpelinck-Verschueren CA, Nikoloski G, van der Reijden BA, van Wageningen S et al. ID1 and ID2 are retinoic acid responsive genes and induce a G0/G1 accumulation in acute promyelocytic leukemia cells. Leukemia 2005; 19: 799–805.

    Article  CAS  PubMed  Google Scholar 

  21. Marteijn JA, van der Meer LT, van Emst L, de Witte T, Jansen JH, van der Reijden BA . Diminished proteasomal degradation results in accumulation of Gfi1 protein in monocytes. Blood 2007; 109: 100–108.

    Article  CAS  PubMed  Google Scholar 

  22. van der Reijden BA, Simons A, Luiten E, van der Poel SC, Hogenbirk PE, Tonnissen E et al. Minimal residual disease quantification in patients with acute myeloid leukaemia and inv(16)/CBFB-MYH11 gene fusion. Br J Haematol 2002; 118: 411–418.

    Article  CAS  PubMed  Google Scholar 

  23. Ito K, Adachi S, Iwakami R, Yasuda H, Muto Y, Seki N et al. N-terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur J Biochem 2001; 268: 2725–2732.

    Article  CAS  PubMed  Google Scholar 

  24. Doss-Pepe EW, Chen L, Madura K . Alpha-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J Biol Chem 2005; 280: 16619–16624.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C et al. Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP–Ubc13–Uev1a complex. Mol Cell 2005; 20: 525–538.

    Article  CAS  PubMed  Google Scholar 

  26. Plans V, Scheper J, Soler M, Loukili N, Okano Y, Thomson TM . The RING finger protein RNF8 recruits UBC13 for lysine 63-based self polyubiquitylation. J Cell Biochem 2006; 97: 572–582.

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann RM, Pickart CM . Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999; 96: 645–653.

    Article  CAS  PubMed  Google Scholar 

  28. Morett E, Bork P . A novel transactivation domain in parkin. Trends Biochem Sci 1999; 24: 229–231.

    Article  CAS  PubMed  Google Scholar 

  29. van der Reijden BA, Erpelinck-Verschueren CA, Lowenberg B, Jansen JH . TRIADs: a new class of proteins with a novel cysteine-rich signature. Protein Sci 1999; 8: 1557–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lovering R, Hanson IM, Borden KL, Martin S, O'Reilly NJ, Evan GI et al. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 1993; 90: 2112–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez-Noel G, Muller U, Harbers K . Identification of molecular determinants required for interaction of ubiquitin-conjugating enzymes and RING finger proteins. Eur J Biochem 2001; 268: 5912–5919.

    Article  CAS  PubMed  Google Scholar 

  32. Moynihan TP, Ardley HC, Nuber U, Rose SA, Jones PF, Markham AF et al. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J Biol Chem 1999; 274: 30963–30968.

    Article  CAS  PubMed  Google Scholar 

  33. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25: 302–305.

    Article  CAS  PubMed  Google Scholar 

  34. Capili AD, Edghill EL, Wu K, Borden KL . Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J Mol Biol 2004; 340: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  35. Lim KL, Dawson VL, Dawson TM . Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiol Aging 2006; 27: 524–529.

    Article  CAS  PubMed  Google Scholar 

  36. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 2007; 178: 1025–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O . Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum Mol Genet 2006; 15: 2059–2075.

    Article  CAS  PubMed  Google Scholar 

  38. Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, Tanaka K . Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem 2006; 281: 3204–3209.

    Article  CAS  PubMed  Google Scholar 

  39. Pickart CM, Raasi S . Controlled synthesis of polyubiquitin chains. Methods Enzymol 2005; 399: 21–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Knipscheer, Dr Notenboom (Dutch Cancer Institute, Amsterdam, The Netherlands) for large-scale His-Triad1 production and Ubc13–Mms2, respectively, Dr Thomsom (Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain) for sharing the Ubc13-flag construct, Dr Timmers (University Medical Center, Utrecht, The Netherlands) for UbcH7.

This work was supported by grants of the Dutch Cancer Society (KUN2001-2395) and the Vanderes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A van der Reijden.

Additional information

Supplementary information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marteijn, J., van der Meer, L., Smit, J. et al. The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains. Leukemia 23, 1480–1489 (2009). https://doi.org/10.1038/leu.2009.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.57

Keywords

This article is cited by

Search

Quick links