Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas

Abstract

Oncogenes involved in recurrent chromosomal translocations serve as diagnostic markers and therapeutic targets in hematopoietic tumors. In contrast to myeloid and B-cell neoplasms, translocations in peripheral T-cell lymphomas (PTCLs) are poorly understood. Here, we identified recurrent translocations involving the multiple myeloma oncogene-1/interferon regulatory factor-4 (IRF4) locus in PTCLs. IRF4 translocations exist in myeloma and some B-cell lymphomas, but have not been reported earlier in PTCLs. We studied 169 PTCLs using fluorescence in situ hybridization and identified 12 cases with IRF4 translocations. Two cases with t(6;14)(p25;q11.2) had translocations between IRF4 and the T-cell receptor-alpha (TCRA) locus. Both were cytotoxic PTCLs, unspecified (PTCL-Us) involving bone marrow and skin. In total, 8 of the remaining 10 cases were cutaneous anaplastic large-cell lymphomas (ALCLs) without TCRA rearrangements (57% of cutaneous ALCLs tested). These findings identified IRF4 translocations as a novel recurrent genetic abnormality in PTCLs. Cytotoxic PTCL-Us involving bone marrow and skin and containing IRF4/TCRA translocations might represent a distinct clinicopathologic entity. Translocations involving IRF4 but not TCRA appear to occur predominantly in cutaneous ALCLs. Detecting these translocations may be useful in lymphoma diagnosis. Further, due to its involvement in translocations, MUM1/IRF4 protein may play an important biologic role in some PTCLs, and might represent a possible therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jaffe ES, Harris NL, Stein H, Vardiman J . Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2001.

    Google Scholar 

  2. Savage KJ, Chhanabhai M, Gascoyne RD, Connors JM . Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol 2004; 15: 1467–1475.

    Article  CAS  PubMed  Google Scholar 

  3. Feldman AL, Sun DX, Law ME, Novak AJ, Attygalle AD, Thorland EC et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 2008; 22: 1139–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A . Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 2006; 20: 313–318.

    Article  CAS  PubMed  Google Scholar 

  5. Li R, Morris SW . Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 2008; 28: 372–412.

    Article  CAS  PubMed  Google Scholar 

  6. Jaffe ES . Anaplastic large cell lymphoma: the shifting sands of diagnostic hematopathology. Mod Pathol 2001; 14: 219–228.

    Article  CAS  PubMed  Google Scholar 

  7. Lae ME, Ahmed I, Macon WR . Clusterin is widely expressed in systemic anaplastic large cell lymphoma but fails to differentiate primary from secondary cutaneous anaplastic large cell lymphoma. Am J Clin Pathol 2002; 118: 773–779.

    Article  PubMed  Google Scholar 

  8. Droc C, Cualing HD, Kadin ME . Need for an improved molecular/genetic classification for CD30+ lymphomas involving the skin. Cancer Control 2007; 14: 124–132.

    Article  PubMed  Google Scholar 

  9. Amin HM, Lai R . Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood 2007; 110: 2259–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iida S, Rao PH, Butler M, Corradini P, Boccadoro M, Klein B et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 1997; 17: 226–230.

    Article  CAS  PubMed  Google Scholar 

  11. Feldman AL, Law M, Grogg KL, Thorland EC, Fink S, Kurtin PJ et al. Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. Am J Clin Pathol 2008; 130: 178–185.

    Article  PubMed  Google Scholar 

  12. Remstein ED, Dogan A, Einerson RR, Paternoster SF, Fink SR, Law M et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol 2006; 30: 1546–1553.

    Article  PubMed  Google Scholar 

  13. Remstein ED, Law M, Mollejo M, Piris MA, Kurtin PJ, Dogan A . The prevalence of IG translocations and 7q32 deletions in splenic marginal zone lymphoma. Leukemia 2008; 22: 1268–1272.

    Article  CAS  PubMed  Google Scholar 

  14. Wiktor AE, Van Dyke DL, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM et al. Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genet Med 2006; 8: 16–23.

    Article  CAS  PubMed  Google Scholar 

  15. Paternoster SF, Brockman SR, McClure RF, Remstein ED, Kurtin PJ, Dewald GW . A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase fluorescence in situ hybridization. Am J Pathol 2002; 160: 1967–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Einerson RR, Kurtin PJ, Dayharsh GA, Kimlinger TK, Remstein ED . FISH is superior to PCR in detecting t(14;18)(q32;q21)-IgH/bcl-2 in follicular lymphoma using paraffin-embedded tissue samples. Am J Clin Pathol 2005; 124: 421–429.

    Article  CAS  PubMed  Google Scholar 

  17. Kurtin PJ, Hobday KS, Ziesmer S, Caron BL . Demonstration of distinct antigenic profiles of small B-cell lymphomas by paraffin section immunohistochemistry. Am J Clin Pathol 1999; 112: 319–329.

    Article  CAS  PubMed  Google Scholar 

  18. Roden AC, Macon WR, Keeney GL, Myers JL, Feldman AL, Dogan A . Seroma-associated primary anaplastic large-cell lymphoma adjacent to breast implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol 2008; 21: 455–463.

    Article  CAS  PubMed  Google Scholar 

  19. Barch M, Knutsen T, Spubeck J (eds). The AGT Cytogenetics Laboratory Manual. Lippincott-Raven: Philadelphia, PA, 1997.

    Google Scholar 

  20. Roncador G, Garcia JF, Maestre L, Lucas E, Menarguez J, Ohshima K et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005; 19: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  21. Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugieres L, Terrier-Lacombe MJ et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 1998; 91: 2076–2084.

    CAS  PubMed  Google Scholar 

  22. Boulland ML, Wechsler J, Bagot M, Pulford K, Kanavaros P, Gaulard P . Primary CD30-positive cutaneous T-cell lymphomas and lymphomatoid papulosis frequently express cytotoxic proteins. Histopathology 2000; 36: 136–144.

    Article  CAS  PubMed  Google Scholar 

  23. Kummer JA, Vermeer MH, Dukers D, Meijer CJ, Willemze R . Most primary cutaneous CD30-positive lymphoproliferative disorders have a CD4-positive cytotoxic T-cell phenotype. J Invest Dermatol 1997; 109: 636–640.

    Article  CAS  PubMed  Google Scholar 

  24. Felgar RE, Salhany KE, Macon WR, Pietra GG, Kinney MC . The expression of TIA-1+ cytolytic-type granules and other cytolytic lymphocyte-associated markers in CD30+ anaplastic large cell lymphomas (ALCL): correlation with morphology, immunophenotype, ultrastructure, and clinical features. Hum Pathol 1999; 30: 228–236.

    Article  CAS  PubMed  Google Scholar 

  25. Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM et al. ALK––anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008; 111: 5496–5504.

    Article  CAS  PubMed  Google Scholar 

  26. Bekkenk MW, Geelen FA, van Voorst Vader PC, Heule F, Geerts ML, van Vloten WA et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 2000; 95: 3653–3661.

    CAS  PubMed  Google Scholar 

  27. ten Berge RL, de Bruin PC, Oudejans JJ, Ossenkoppele GJ, van der Valk P, Meijer CK . ALK-negative anaplastic large-cell lymphoma demonstrates similar poor prognosis to peripheral T-cell lymphoma, unspecified. Histopathology 2003; 43: 462–469.

    Article  CAS  PubMed  Google Scholar 

  28. Salaverria I, Bea S, Lopez-Guillermo A, Lespinet V, Pinyol M, Burkhardt B et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol 2008; 140: 516–526.

    Article  PubMed  Google Scholar 

  29. Mao X, Orchard G, Lillington DM, Russell-Jones R, Young BD, Whittaker S . Genetic alterations in primary cutaneous CD30+ anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003; 37: 176–185.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson MA, Stumph J, Henrickson SE, Rosenwald A, Wang Q, Olson S et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol 2005; 36: 494–504.

    Article  CAS  PubMed  Google Scholar 

  31. Falini B, Fizzotti M, Pucciarini A, Bigerna B, Marafioti T, Gambacorta M et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood 2000; 95: 2084–2092.

    CAS  PubMed  Google Scholar 

  32. Chesi M, Kuehl WM, Bergsagel PL . Recurrent immunoglobulin gene translocations identify distinct molecular subtypes of myeloma. Ann Oncol 2000; 11 (Suppl. 1): 131–135.

    Article  PubMed  Google Scholar 

  33. Tamura A, Miura I, Iida S, Yokota S, Horiike S, Nishida K et al. Interphase detection of immunoglobulin heavy chain gene translocations with specific oncogene loci in 173 patients with B-cell lymphoma. Cancer Genet Cytogenet 2001; 129: 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Michaux L, Wlodarska I, Rack K, Stul M, Criel A, Maerevoet M et al. Translocation t(1;6)(p35.3;p25.2): a new recurrent aberration in ‘unmutated’; B-CLL. Leukemia 2005; 19: 77–82.

    Article  CAS  PubMed  Google Scholar 

  35. Mecucci C, Michaux JL, Tricot G, Louwagie A, den Berghe H . Rearrangements of the short arm of chromosome no. 6 in T-cell lymphomas. Leuk Res 1985; 9: 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  36. Ott G, Katzenberger T, Siebert R, DeCoteau JF, Fletcher JA, Knoll JH et al. Chromosomal abnormalities in nodal and extranodal CD30+ anaplastic large cell lymphomas: infrequent detection of the t(2;5) in extranodal lymphomas. Genes Chromosomes Cancer 1998; 22: 114–121.

    Article  CAS  PubMed  Google Scholar 

  37. Mitelman F, Johansson B, Mertens F (eds). Mitelman Database of Chromosome Aberrations in Cancer (http://cgap.nci.nih.gov/Chromosomes/Mitelman 2007).

  38. Pekarsky Y, Hallas C, Isobe M, Russo G, Croce CM . Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc Natl Acad Sci USA 1999; 96: 2949–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Almire C, Bertrand P, Ruminy P, Maingonnat C, Wlodarska I, Martin-Subero JI et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer 2007; 46: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  40. Leich E, Haralambieva E, Zettl A, Chott A, Rudiger T, Holler S et al. Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas. J Pathol 2007; 213: 99–105.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuboi K, Iida S, Inagaki H, Kato M, Hayami Y, Hanamura I et al. MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia 2000; 14: 449–456.

    Article  CAS  PubMed  Google Scholar 

  42. Natkunam Y, Warnke RA, Montgomery K, Falini B, Van De Rijn M . Analysis of MUM1/IRF4 protein expression using tissue microarrays and immunohistochemistry. Mod Pathol 2001; 14: 686–694.

    Article  CAS  PubMed  Google Scholar 

  43. Wasco MJ, Fullen D, Su L, Ma L . The expression of MUM1 in cutaneous T-cell lymphoproliferative disorders. Hum Pathol 2008; 39: 557–563.

    Article  CAS  PubMed  Google Scholar 

  44. Iqbal J, Greiner TC, Patel K, Dave BJ, Smith L, Ji J et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 2007; 21: 2332–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kempf W, Kutzner H, Cozzio A, Sander CA, Pfaltz MC, Muller B et al. MUM1 expression in cutaneous CD30+ lymphoproliferative disorders: a valuable tool for the distinction between lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. Br J Dermatol 2008; 158: 1280–1287.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao WL, Liu YY, Zhang QL, Wang L, Leboeuf C, Zhang YW et al. PRDM1 is involved in chemoresistance of T-cell lymphoma and down-regulated by the proteasome inhibitor. Blood 2008; 111: 3867–3871.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zinzani PL, Musuraca G, Tani M, Stefoni V, Marchi E, Fina M et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25: 4293–4297.

    Article  CAS  PubMed  Google Scholar 

  49. Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005; 105: 3058–3065.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Career Development Award (to ALF) from the Iowa/Mayo Lymphoma SPORE (P50 CA97274) and part of the study was presented at the 97th Annual Meeting of the United States and Canadian Academy of Pathology on 4 March 2008. We gratefully acknowledge Ms Monica Kramer for her excellent secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Feldman.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, A., Law, M., Remstein, E. et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 23, 574–580 (2009). https://doi.org/10.1038/leu.2008.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.320

Keywords

This article is cited by

Search

Quick links