Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed–Sternberg cells

Abstract

To get an insight into the transition from mononuclear Hodgkin cells (H cells) to diagnostic multinuclear Reed–Sternberg cells (RS cells), we performed an analysis of the three-dimensional (3D) structure of the telomeres in the nuclei of the Hodgkin cell lines HDLM-2, L-428, L-1236 and lymph node biopsies of patients with Hodgkin's disease. Cellular localization of key proteins of the telomere-localized shelterin complex, the mitotic spindle and double-stranded DNA breaks was also analyzed. RS cells show significantly shorter and significantly fewer telomeres in relation to the total nuclear volume when compared with H cells; in particular, telomere-poor ‘ghost’ nuclei are often adjacent to one or two nuclei displaying huge telomeric aggregates. Shelterin proteins are mainly cytoplasmic in both H and RS cells, whereas double-stranded DNA breaks accumulate in the nuclei of RS cells. In RS cells, multipolar spindles prevent proper chromosome segregation. In conclusion, a process of nuclear disorganization seems to initiate in H cells and further progresses when the cells turn into RS cells and become end-stage tumor cells, unable to divide further because of telomere loss, shortening and aggregate formation, extensive DNA damage and aberrant mitotic spindles that may no longer sustain chromosome segregation. Our findings allow a mechanistic 3D understanding of the transition of H to RS cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Küppers R, Rajewsky K . The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease. Annu Rev Immunol 1998; 16: 471–493.

    Article  Google Scholar 

  2. Müschen M, Rajewsky K, Bräuninger A, Baur AS, Oudejans JJ, Roers A et al. Rare occurrence of classical Hodgkin's disease as a T cell lymphoma. J Exp Med 2000; 191: 387–394.

    Article  Google Scholar 

  3. Knecht H, Bachmann E, Brousset P, Sandvej K, Nadal D, Bachmann F et al. Deletions within the LMP1 oncogene of Epstein–Barr virus are clustered in Hodgkin's disease and identical to those observed in nasopharyngeal carcinoma. Blood 1993; 82: 2937–2942.

    CAS  PubMed  Google Scholar 

  4. Skinnider BF, Mak TW . The role of cytokines in classical Hodgkin lymphoma. Blood 2002; 99: 4289–4297.

    Google Scholar 

  5. Schaadt M, Fonatsch C, Kirchner H, Diehl V . Establishment of a malignant, Epstein–Barr-virus (EBV)-negative cell-line from the pleura effusion of a patient with Hodgkin's disease. Blut 1979; 38: 185–190.

    Article  CAS  Google Scholar 

  6. Drexler HG, Gignac SM, Hoffbrand AV, Minowada J . Formation of multinucleated cells in a Hodgkin's-disease-derived cell line. Int J Cancer 1989; 43: 1083–1090.

    Article  CAS  Google Scholar 

  7. Wolf J, Kapp U, Bohlen H, Kornacker M, Schoch C, Stahl B et al. Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood 1996; 87: 3418–3428.

    CAS  PubMed  Google Scholar 

  8. Hsu SM, Zhao X, Chakraborty S, Liu YF, Whang-Peng J, Lok MS et al. Reed–Sternberg cells in Hodgkin's cell lines HDLM, L-428, and KM-H2 are not actively replicating: lack of bromodeoxyuridine uptake by multinuclear cells in culture. Blood 1988; 71: 1382–1389.

    CAS  PubMed  Google Scholar 

  9. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998; 58: 3974–3985.

    CAS  PubMed  Google Scholar 

  10. MacLeod RA, Spitzer D, Bar-Am I, Sylvester JE, Kaufmann M, Wernich A et al. Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification. Leukemia 2000; 14: 1803–1814.

    Article  CAS  Google Scholar 

  11. Bailey SM, Murnane JP . Telomeres, chromosome instability and cancer. Nucleic Acid Res 2006; 34: 2408–2417.

    Article  CAS  Google Scholar 

  12. Mai S, Garini Y . The significance of telomeric aggregates in the interphase nuclei of tumor cells. J Cell Biochem 2006; 97: 904–915.

    Article  CAS  Google Scholar 

  13. LeBel C, Wellinger RJ . Telomeres: what's new at your end? J Cell Science 2005; 118: 2785–2788.

    Article  CAS  Google Scholar 

  14. De Lange T . Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev 2005; 19: 2100–2110.

    Article  CAS  Google Scholar 

  15. Hug N, Lingner J . Telomere length homeostasis. Chromosoma 2006; 115: 413–425.

    Article  CAS  Google Scholar 

  16. Brousset P, Al Saati T, Chaouche N, Zenou RC, Schlaifer D, Chittal S et al. Telomerase activity in reactive and neoplastic lymphoid tissue: infrequent detection of activity in Hodgkin's disease. Blood 1997; 89: 26–31.

    CAS  PubMed  Google Scholar 

  17. Norrback KF, Enblad G, Erlanson M, Sundström C, Roos G . Telomerase activity in Hodgkin's disease. Blood 1998; 92: 567–573.

    CAS  PubMed  Google Scholar 

  18. Heine B, Hummel M, Demel G, Stein H . Hodgkin and Reed–Sternberg cells of classical Hodgkin's disease overexpress the telomerase RNA template (hTR). J Pathol 1999; 188: 139–145.

    Article  CAS  Google Scholar 

  19. Fukasawa K, Wiener F, Vande Woude GF, Mai S . Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 1997; 15: 1295–1302.

    Article  CAS  Google Scholar 

  20. Figueroa R, Lindenmaier H, Hergenhan M, Nielsen KV, Boukamp P . Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors. Cancer Res 2000; 60: 2770–2774.

    CAS  PubMed  Google Scholar 

  21. Chuang TC, Moshir S, Garini Y, Chuang AYC, Young IT, Vermolen B et al. The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol 2004; 2: 12.

    Article  Google Scholar 

  22. Louis SF, Vermolen BJ, Garini Y, Young IT, Guffei A, Lichtensztein Z et al. C-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci USA 2005; 102: 9613–9618.

    Article  CAS  Google Scholar 

  23. Schaefer LH, Schuster D, Herz H . Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc 2001; 204: 99–107.

    Article  CAS  Google Scholar 

  24. Vermolen BJ, Garini Y, Mai S, Mougey V, Fest T, Chuang TC et al. Characterizing the three-dimensional organization of telomeres. Cytometry A 2005; 67: 144–150.

    Article  CAS  Google Scholar 

  25. Poon SS, Martens UM, Ward RK, Lansdorp PM . Telomere length measurements using digital fluorescence microscopy. Cytometry 1999; 36: 267–278.

    Article  CAS  Google Scholar 

  26. Sarkar R, Guffei A, Vermolen BJ, Garini Y, Mai S . Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry A 2007; 71: 386–392.

    Article  Google Scholar 

  27. Küppers R, Bräuninger A, Müschen M, Distler V, Hansmann ML, Rajewsky K . Evidence that Hodgkin and Reed–Sternberg cells in Hodgkin disease do not represent cell fusions. Blood 2001; 97: 818–821.

    Article  Google Scholar 

  28. Re D, Benenson E, Beyer M, Gresch O, Draube A, Diehl V et al. Cell fusion is not involved in the generation of giant cells in the Hodgkin-Reed Sternberg cell line L-1236. Am J Hematol 2001; 67: 6–9.

    Article  CAS  Google Scholar 

  29. Martin-Subero JI, Knippschild U, Harder L, Barth TF, Riemke J, Grohmann S et al. Segmental chromosomal aberrations and centrosome amplifications: pathogenetic mechanisms in Hodgkin and Reed–Sternberg cells of classical Hodgkin's lymphoma. Leukemia 2003; 17: 2214–2219.

    Article  CAS  Google Scholar 

  30. Martin-Subero JI, Klapper W, Sotnikova A, Callet-Bauchu E, Harder L, Bastard C et al. Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed–Sternberg cells of classical Hodgkin lymphoma. Cancer Res 2006; 66: 10332–10338.

    Article  CAS  Google Scholar 

  31. Re D, Zander T, Diehl V, Wolf J . Genetic instability in Hodgkin's lymphoma. Ann Oncol 2002; 13: 19–22 (Suppl 1).

    Article  Google Scholar 

  32. Kim NW, Piatyszek MA, Prowse KR, Harley CW, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  Google Scholar 

  33. Blasco MA, Rizen M, Greider CW, Hanahan D . Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat Genet 1996; 12: 200–204.

    Article  CAS  Google Scholar 

  34. M'Kacher R, Bennacoeur-Griscelli A, Girinsky T, Koschielny S, Delhommeau F, Dossou J et al. Telomere shortening and associated chromosomal instability in peripheral blood lymphocytes of patients with Hodgkin's lymphoma prior to any treatment are predictive of second cancers. Int J Radiat Oncol Biol Phys 2007; 68: 465–471.

    Article  CAS  Google Scholar 

  35. Widmann TA, Herrmann M, Taha N, König J, Pfreundschuh M . Short telomeres in aggressive non-Hodgkin's lymphoma as a risk factor in lymphomagenesis. Exp Hematol 2007; 35: 939–946.

    Article  CAS  Google Scholar 

  36. Stewénius Y, Gorunova L, Jonson T, Larsson N, Höglund M, Mandahl N et al. Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA 2005; 102: 5541–5546.

    Article  Google Scholar 

  37. Gisselsson D, Jonson T, Petérsen A, Strömbeck B, Dalcin P, Höglund M et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 2001; 98: 12683–12688.

    Article  CAS  Google Scholar 

  38. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD . Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 2001; 409: 633–637.

    Article  CAS  Google Scholar 

  39. Savage SA, Chanock SJ, Lissowska J, Brinton LA, Richesson D, Peplonska B et al. Genetic variation in five genes important in telomere biology and risk for breast cancer. Br J Cancer 2007; 97: 832–836.

    Article  CAS  Google Scholar 

  40. Berezney R, Coffey DS . Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol 1977; 73: 616–637.

    Article  CAS  Google Scholar 

  41. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S . Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 2006; 18: 307–316.

    Article  CAS  Google Scholar 

  42. De Lange T . Human telomeres are attached to the nuclear matrix. EMBO J 1992; 11: 717–724.

    Article  CAS  Google Scholar 

  43. Coffey DS . Nuclear matrix proteins as proteomic markers of preneoplastic and cancer lesions. Clin Cancer Res 2002; 8: 3039–3045.

    Google Scholar 

  44. Broccoli B, Smogorzewska A, Chong L, de Lange T . Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 1997; 17: 231–235.

    Article  CAS  Google Scholar 

  45. Chen LY, Liu D, Songyang Z . Telomere maintenance through spatial control of telomeric proteins. Mol Cell Biol 2007; 27: 5898–5909.

    Article  CAS  Google Scholar 

  46. Nijjar T, Bassett E, Garbe J, Takenaka Y, Stampfer MR, Gilley D et al. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human brest cells. Oncogene 2005; 24: 3369–3376.

    Article  CAS  Google Scholar 

  47. Re D, Benenson L, Wickenhauser C, Starostik P, Starostik-Jox A, Müller-Hermelink HK et al. Proficient mismatch repair protein expression in Hodgkin and Reed–Sternberg cells. Int J Cancer 2002; 97: 205–210.

    Article  CAS  Google Scholar 

  48. Pihan GA, Wallace J, Zhou YN, Doxsey SJ . Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 2003; 63: 1398–1404.

    CAS  PubMed  Google Scholar 

  49. Salisbury JL, D'Assoro AB, Lingle WL . Centrosome amplification and the origin of chromosomal instability in brest cancer. J Mammary Gland Biol Neoplasia 2004; 9: 275–283.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the NCIC/Canadian Cancer Society (grants 16100 to SM and 017116 to RJW) and by the Centre de Recherche Clinique du CHUS (grant PAFI 90914 to HK). We thank Mary Cheang, PhD, University of Manitoba Biostatistics Unit, for statistical analysis of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Knecht.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knecht, H., Sawan, B., Lichtensztejn, D. et al. The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed–Sternberg cells. Leukemia 23, 565–573 (2009). https://doi.org/10.1038/leu.2008.314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.314

Keywords

This article is cited by

Search

Quick links