Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Effects of a fire alarm strobe light on fecal corticosterone metabolite concentrations in mice

Abstract

The type and location of fire alarms are important considerations in animal facility design. The Guide for the Care and Use of Laboratory Animals recommends minimizing animal exposure to such alarms. Nevertheless, it is often necessary to maintain fire alarms within animal housing or procedural areas. The authors exposed male mice to the flashing strobe light component of a standard fire alarm and evaluated mouse fecal corticosterone concentration, which is known to be an indicator of stress. Mice were exposed to the strobe light for 5 min during either the light or the dark phase of the light:dark cycle. The authors collected fecal samples every 6 h for 24 h before exposing mice to the alarm and every 6 h for 24 h after exposure. Fecal samples taken before exposure (baseline samples) showed a normal circadian pattern of corticosterone metabolite excretion. In fecal samples taken after mice were exposed to the fire alarm, metabolite concentrations did not significantly differ from baseline concentrations over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental timelines.
Figure 2: Mean corticosterone metabolite concentrations in baseline fecal samples for all mice (group 1 and group 2 combined).
Figure 3: Mean corticosterone metabolite concentrations in baseline and post-alarm fecal samples for mice that were exposed to the fire alarm during the daytime (9:00 AM).
Figure 4: Mean corticosterone metabolite concentrations in baseline and post-alarm fecal samples for mice that were exposed to the fire alarm during the night (9:00 PM).

Similar content being viewed by others

References

  1. Clough, G. & Fasham, J.A.L. A 'silent' fire alarm. Lab. Anim. 9, 193–196 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Turner, J.G., Parrish, J.L., Hughes, L.F., Toth, L.A. & Caspary, D.M. Hearing in laboratory animals: strain differences and nonauditory effects of noise. Comp. Med. 55, 12–23 (2005).

    CAS  PubMed  Google Scholar 

  3. Willott, J.F. Factors affecting hearing in mice, rats and other laboratory animals. J. Am. Assoc. Lab. Anim. Sci. 46, 23–27 (2007).

    CAS  PubMed  Google Scholar 

  4. National Fire Protection Agency. NFPA 72 National Fire Alarm Code (National Fire Protection Agency, Quincy, 2007).

  5. Anisman, H., Prakash, P., Merali, Z. & Poulter, M.O. Corticotropin releasing hormone receptor alterations elicited by acute and chronic unpredictable stressor challenges in stressor-susceptible and resilient strains of mice. Behav. Brain Res. 181, 180–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Busnel, R.G., Busnel, M.C. & Lehmann, A.G. Synergic effects of noise and stress on general behavior. Life Sci. 16, 131–137 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. de Wazieres, B. et al. Effect of an auditory stress on perito-neal and alveolar cells in C57 BL/6J mice of advanced age. Luminescence 15, 233–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Haque, S.F. et al. Anesthesia and acoustic stress-induced intra-uterine growth retardation in mice. J. Reprod. Dev. 50, 185–190 (2004).

    Article  PubMed  Google Scholar 

  9. Kugler, J., Kalveram, K.T. & Lange, K.W. Acute, not chronic, exposure to unpredictable noise periods affects splenic lymphocytes and plasma corticosterone in the mouse. Int. J. Neurosci. 51, 233–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Monjan, A.A. & Collector, M.I. Stress-induced modulation of the immune response. Science 196, 307–308 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Nunez, M.J. et al. Music, immunity and cancer. Life Sci. 71, 1047–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Institute of Laboratory Animal Resources, National Research Council. Guide for the Care and Use of Laboratory Animals 36, 77 (National Academy, Washington, DC, 1996).

  13. Parfitt, D.B., Walton, J.R., Corriveau, E.A. & Helmreich, D.L. Early life stress effects on adult stress-induced cortico-sterone secretion and anxiety-like behavior in the C57BL/6 mouse are not as robust as initially thought. Horm. Behav. 52, 417–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Turner, J.G., Baurer, C.A. & Rybak, L.P. Noise in animal facilities: why it matters. J. Am. Assoc. Lab. Anim. Sci. 46, 10–13 (2007).

    CAS  PubMed  Google Scholar 

  15. van Raaij, M.T.M., Oortgiesen, M., Timmerman, H.H. & Dobbe, C.J.G. & van Loveren, H. Time-dependent differential changes of immune function in rats exposed to chronic intermittent noise. Physiol. Behav. 60, 1527–1533 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Vitale, F., Arletti, R. & Sandrini, M. Acute noise stress analgesia in relation to 5-HT2 and mu-opioid receptor changes in the frontal cortex of young mice. Life Sci. 77, 2500–2513 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, K.C. & Ariizumi, M. Modulations of immune functions and oxidative status induced by noise stress. J. Occup. Health 49, 32–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Zondek, B. & Tamari, I. Effect of audiogenic stimulation on genital function and reproduction. Am. J. Obstet. Gynecol. 80, 1041–1048 (1960).

    Article  CAS  PubMed  Google Scholar 

  19. Zondek, B. & Tamari, I. Effect of audiogenic stimulation on genital function and reproduction: III. Infertility induced by auditory stimuli prior to mating. Acta Endocrinol. (Copenh). 45 Suppl., 227–234 (1964).

    Article  Google Scholar 

  20. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Cavigelli, S.A. et al. Fecal corticoid metabolites in aged male and female rats after husbandry-related disturbances in the colony room. J. Am. Assoc. Lab. Anim. Sci. 45, 17–21 (2006).

    CAS  PubMed  Google Scholar 

  22. Davidson, A.J. et al. Chronic jet-lag increases mortality in aged mice. Curr. Biol. 16, R914–916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Demas, G.E. & Nelson, R.J. Photoperiod and temperature interact to affect immune parameters in adult male deer mice (Peromyscus maniculatus). J. Biol. Rhythms 11, 94–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Jacoby, R.O., Fox, J.G. & Davisson, M. in Laboratory Animal Medicine 2nd edn. (eds. Fox, J.G., Anderson, L.C., Loew, F.M. & Quimby, F.W.) 35–120 (Academic, Amsterdam, 2002).

    Book  Google Scholar 

  25. Leproult, R., Colecchia, E.F., L'Hermite-Baleriaux, M. & van Cauter, E. Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J. Clin. Endocrinol. Metab. 86, 151–157 (2001).

    CAS  PubMed  Google Scholar 

  26. Roedel, A., Storch, C., Holsboer, F. & Ohl, F. Effects of light or dark phase testing on behavioural and cognitive performance in DBA mice. Lab. Anim. 40, 371–381 (2005).

    Article  Google Scholar 

  27. Scheer, F.A.J. L & Buijs, R.M. Light affects morning salivary cortisol in humans. J. Clin. Endocrinol. Metab. 84, 3395–3398 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Touma, C., Sachser, N., Mostl, E. & Palme, R. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen. Comp. Endocrinol. 130, 267–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Valentinuzzi, V.S. et al. Locomotor response to an open field during C57BL/6J active and inactive phases: differences dependent on conditions of illumination. Physiol. Behav. 69, 269–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. van der Meer, E., van Loo, P.L. & Baumans, V. Short-term effects of a disturbed light-dark cycle and environmental enrichment on aggression and stress-related parameters in male mice. Lab. Anim. 38, 376–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ishida, A. et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Bourin, M. & Hascoët, M. The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hascoët, M., Bourin, M. & Dhonnchadha, B.A. The mouse light-dark paradigm: a review. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 141–166 (2001).

    Article  PubMed  Google Scholar 

  35. Zalcman, S., Kerr, L. & Anisman, H. Immunosuppression elicited by stressors and stressor-related odors. Brain Behav. Immun. 5, 262–273 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Kapoor, A. & Matthews, S.G. Short periods of prenatal stress affect growth, behaviour and hypothalamo-pituitary-adrenal axis activity in male guinea pig offspring. J. Physiol. 566, 967–977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrett, A.M. & Stockham, M.A. The effect of housing conditions and simple experimental procedures upon the corticosterone level in the plasma of rats. J. Endocrinol. 26, 97–105 (1963).

    Article  CAS  PubMed  Google Scholar 

  38. Chelini, M.O., Souza, N.L., Cortopassi, S.R.G., Felippe, E.C.G. & Oliveira, C.A. Assessment of the physiologic stress response by quantification of fecal corticosteroids. J. Am. Assoc. Lab. Anim. Sci. 45, 8–11 (2006).

    CAS  PubMed  Google Scholar 

  39. Good, T., Khan, M.Z. & Lynch, J.W. Biochemical and physiological validation of a corticosteroid radioimmunoassay for plasma and fecal samples in oldfield mice (Peromyscus polionotus). Physiol. Behav. 80, 405–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Halberg, F., Albrecht, P.G. & Bittner, J.J. Corticosterone rhythm of mouse adrenal in relation to serum corticosterone and sampling. Am. J. Physiol. 197, 1083–1085 (1959).

    Article  CAS  PubMed  Google Scholar 

  41. Laber, K., Veatch, L.M., Lopez, M.F., Mulligan, J.K. & Lathers, D.M.R. Effects of housing density on weight gain, immune function, behavior, and plasma corticosterone concentrations in BALB/c and C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 47, 16–23 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lipman, N.S. & Perkins, S.E. in Laboratory Animal Medicine 2nd edn. (eds. Fox, J.G., Anderson, L.C., Loew, F.M. & Quimby, F.W.) 1143–1184 (Academic, Amsterdam, 2002).

    Book  Google Scholar 

  43. O'Malley, J., Dambrosia, J.M. & Davis, J.A. Effect of housing density on reproductive parameters and corticosterone levels in nursing mice. J. Am. Assoc. Lab. Anim. Sci. 47, 9–15 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Parfitt, D.B. et al. Differential early rearing environments can accentuate or attenuate the responses to stress in male C57BL/6 mice. Brain Res. 1016, 111–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Smagin, G.N., Heinrichs, S.C. & Dunn, A.J. The role of CRH in behavioral responses to stress. Peptides 22, 713–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Tanito, M. & Anderson, R.E. Bright cyclic light rearing-mediated retinal protection against damaging light exposure in adrenalectomized mice. Exp. Eye Res. 83, 697–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Touma, C., Palme, R. & Sachser, N. Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones. Horm. Behav. 45, 10–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Wright-Williams, S.L., Courade, J.P., Richardson, C.A., Roughan, J.V. & Flecknell, P.A. Effects of vasectomy surgery and meloxicam treatment on faecal corticosterone levels and behaviour in two strains of laboratory mouse. Pain 130, 108–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Shackleton, C.H.L Hughes, B.A., Lavery, G.G., Walker, E.A. & Stewart, P.M. The corticosteroid metabolic profile of the mouse. Steroids 73, 1066–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Dalm, S. et al. Age-related changes in hypothalamic-pituitary-adrenal axis activity of male C57BL/6J mice. Neuroendocrinology 81, 372–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Cavigelli, S.A. et al. Frequent serial fecal corticoid measures from rats reflect circadian and ovarian corticosterone rhythms. J. Endocrinol. 184, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Grouzmann, E et al. Blood sampling methodology is crucial for precise measurement of plasma catecholamines concentrations in mice. Eur. J. Physiol. 447, 254–258 (2003).

    Article  CAS  Google Scholar 

  53. Bamberg, E., Palme, R. & Meingassner, J.G. Excretion of corticosteroid metabolites in urine and faeces of rats. Lab. Anim. 35, 307–314 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Baker, Donald Kipp, Brian McCarthy and Mark Fernandez for their valuable contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denice Godfrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godfrey, D., Silverman, J. Effects of a fire alarm strobe light on fecal corticosterone metabolite concentrations in mice. Lab Anim 38, 61–68 (2009). https://doi.org/10.1038/laban0209-61

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0209-61

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing