Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An assessment of ambient noise and other environmental variables in a nonhuman primate housing facility

Abstract

Acoustic noise and other environmental variables represent potential confounds for animal research. Of relevance to auditory research, sustained high levels of ambient noise may modify hearing sensitivity and decrease well-being among laboratory animals. The present study was conducted to assess environmental conditions in an animal facility that houses nonhuman primates used for auditory research at the Vanderbilt University Medical Center. Sound levels, vibration, temperature, humidity and luminance were recorded using an environmental monitoring device placed inside of an empty cage in a macaque housing room. Recordings lasted 1 week each, at three different locations within the room. Vibration, temperature, humidity and luminance all varied within recommended levels for nonhuman primates, with one exception of low luminance levels in the bottom cage location. Sound levels at each cage location were characterized by a low baseline of 58–62 dB sound pressure level, with transient peaks up to 109 dB sound pressure level. Sound levels differed significantly across locations, but only by about 1.5 dB. The transient peaks beyond recommended sound levels reflected a very low noise dose, but exceeded startle-inducing levels, which could elicit stress responses. Based on these findings, ambient noise levels in the housing rooms in this primate facility are within acceptable levels and unlikely to contribute to hearing deficits in the nonhuman primates. Our results establish normative values for environmental conditions in a primate facility, can be used to inform best practices for nonhuman primate research and care, and form a baseline for future studies of aging and chronic noise exposure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensory Sentinel device setup shown inside of a modular primate cage unit.
Fig. 2: Example of noise level (dB SPL) versus time (h) plot from March 22 2021, recorded at the top-middle location.
Fig. 3: Distribution of sound levels for each recording location.
Fig. 4: Distribution of sound levels across different recording locations.
Fig. 5: Spectra of sounds in the housing room.

Similar content being viewed by others

Data availability

The datasets generated during the current study and that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Addressing The Rising Prevalence of Hearing Loss (World Health Organization, 2018); https://apps.who.int/iris/handle/10665/260336

  2. Rabinowitz, P. M. Noise-Induced Hearing Loss. Am. Fam. Physician 61, 2759–2760 (2000).

    Google Scholar 

  3. Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 11, 135–142 (2007).

    Article  PubMed  Google Scholar 

  4. van Kempen, E. & Babisch, W. The quantitative relationship between road traffic noise and hypertension. J. Hypertens. 30, 1075–1086 (2012).

    Article  PubMed  Google Scholar 

  5. Hagerman, I. et al. Influence of intensive coronary care acoustics on the quality of care and physiological state of patients. Int. J. Cardiol. 98, 267–270 (2005).

    Article  PubMed  Google Scholar 

  6. Basner, M. et al. Auditory and non-auditory effects of noise on health. Lancet 383, 1325–1332 (2014).

    Article  PubMed  Google Scholar 

  7. Nelson, D. I., Nelson, R. Y., Concha-Barrientos, M. & Fingerhut, M. The global burden of occupational noise-induced hearing loss. Am. J. Ind. Med. 48, 446–458 (2005).

    Article  PubMed  Google Scholar 

  8. National Research Council Guide for the Care and Use of Laboratory Animals 8th edn (National Academies Press, 2011).

  9. Turner, J. G. Noise and vibration in the vivarium: recommendations for developing a measurement plan. J. Am. Assoc. Lab Anim. Sci. 59, 665–672 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Heffner, H. E. & Heffner, R. S. Hearing ranges of laboratory animals. J. Am. Assoc. Lab Anim. Sci. 46, 20–22 (2007).

    CAS  PubMed  Google Scholar 

  11. Pfingst, B. E., Laycock, J., Flammino, F., Lonsbury-Martin, B. & Martin, G. Pure tone thresholds for the rhesus monkey. Hear. Res. 1, 43–47 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Dylla, M., Hrnicek, A., Rice, C. & Ramachandran, R. Detection of tones and their modification by noise in nonhuman primates. J. Assoc. Res. Otolaryngol. 14, 547–560 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown, A. M. & Pye, J. D. Auditory sensitivity at high frequencies in mammals. Adv. Comp. Physiol. Biochem. 6, 1–73 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Sales, G. D., Wilson, K. J., Spencer, K. E. & Milligan, S. R. Environmental ultrasound in laboratories and animal houses: a possible cause for concern in the welfare and use of laboratory animals. Lab Anim. 4, 369–375 (1988).

    Article  Google Scholar 

  15. Reynolds, R. P., Kinard, W. L., Degraff, J. J., Leverage, N. & Norton, J. N. Noise in a laboratory animal facility from the human and mouse perspectives. J. Am. Assoc. Lab Anim. Sci. 49, 592–597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Raff, H., Bruder, E. D., Cullinan, W. E., Ziegler, D. R. & Cohen, E. P. Effect of animal facility construction on basal hypothalamic-pituitary-adrenal and renin-aldosterone activity in the rat. Endocrinology 152, 1218–1221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castelhano-Carlos, M. J. & Baumans, V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab Anim. 43, 311–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Lauer, A. M., May, B. J., Hao, Z. J. & Watson, J. Analysis of environmental sound levels in modern rodent housing rooms. Lab Anim. 38, 154–160 (2009).

    Article  Google Scholar 

  19. Valero, M. D. et al. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear. Res. 353, 213–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burton, J. A., Valero, M. D., Hackett, T. A. & Ramachandran, R. The use of nonhuman primates in studies of noise injury and treatment. J. Acoust. Soc. Am. 146, 3770–3789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Westlund, K. et al. Physiological and behavioural stress responses in cynomolgus macaques (Macaca fascicularis) to noise associated with construction work. Lab Anim. 46, 51–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Peterson, E. A., Augenstein, J. S., Tanis, D. C. & Augenstein, D. G. Noise raises blood pressure without impairing auditory sensitivity. Science 211, 1450–1452 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Bliss-Moreau, E. et al. Improving rigor and reproducibility in nonhuman primate research. Am. J. Primatol. 83, e23331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Serafin, J. V., Moody, D. B. & Stebbins, W. C. Frequency selectivity of the monkey’s auditory system: psychophysical tuning curves. J. Acoust. Soc. Am. 71, 1513–1518 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Bohlen, P., Dylla, M., Timms, C. & Ramachandran, R. Detection of modulated tones in modulated noise by non-human primates. J. Assoc. Res. Otolaryngol. 15, 801–821 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Christison-Lagay, K. L., Bennur, S. & Cohen, Y. E. Contribution of spiking activity in the primary auditory cortex to detection in noise. J. Neurophysiol. 118, 3118–3131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stebbins, W. C., Hawkins, J. E. Jr, Johnson, L. G. & Moody, D. B. Hearing thresholds with outer and inner hair cell loss. Am. J. Otolaryngol. 1, 15–27 (1979).

    Article  CAS  PubMed  Google Scholar 

  28. Liberman, M. C. & Dodds, L. W. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear. Res. 16, 55–74 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Kujawa, S. G. & Liberman, M. C. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 29, 14077–14085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryan, A. F., Kujawa, S. G., Hammill, T., Le Prell, C. & Kil, J. Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol. Neurotol. 37, 271–275 (2016).

    Article  Google Scholar 

  31. Saunders, J. C., Dear, S. P. & Schneider, M. E. The anatomical consequences of acoustic injury: a review and tutorial. J. Acoust. Soc. Am. 78, 833–860 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Saunders, J. C., Cohen, Y. E. & Szymko, Y. M. The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update. J. Acoust. Soc. Am. 90, 136–146 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Bohne, B. A. & Harding, G. W. Degeneration in the cochlea after noise damage: primary versus secondary events. Am. J. Otol. 21, 505–509 (2000).

    CAS  PubMed  Google Scholar 

  34. Turner, J. G., Bauer, C. A. & Rybak, L. P. Noise in animal facilities: why it matters. J. Am. Assoc. Lab. Anim. Sci. 46, 10–13 (2007).

    CAS  PubMed  Google Scholar 

  35. Youssef, P. N., Sheibani, N. & Albert, D. M. Retinal light toxicity. Eye 25, 1–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Drescher, D. G. Effect of temperature on cochlear responses during and after exposure to noise. J. Acoust. Soc. Am. 59, 401–407 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, C. H. et al. Constant light dysregulates cochlear circadian clock and exacerbates noise-induced hearing loss. Int. J. Mol. Sci. 21, 7535 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  38. Rocchi, F., Dylla, M. E., Bohlen, P. A. & Ramachandran, R. Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates. Hear. Res. 344, 1–12 (2017).

    Article  PubMed  Google Scholar 

  39. Burton, J. A., Dylla, M. E. & Ramachandran, R. Frequency selectivity in macaque monkeys measured using a notched-noise method. Hear. Res. 357, 73–80 (2018).

    Article  PubMed  Google Scholar 

  40. Rocchi, F. & Ramachandran, R. Neuronal adaptation to sound statistics in the inferior colliculus of behaving macaques does not reduce the effectiveness of the masking noise. J. Neurophysiol. 120, 2819–2833 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rocchi, F. & Ramachandran, R. Foreground stimuli and task engagement enhance neuronal adaptation to background noise in the inferior colliculus of macaques. J. Neurophysiol. 124, 1315–1326 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peacock, J. et al. The binaural interaction component in rhesus macaques (Macaca mulatta). eNeuro. 8, 402–421 (2021).

    Article  Google Scholar 

  43. Mackey, C. A. et al. Correlations between cochlear pathophysiology and behavioral measures of temporal and spatial processing in noise exposed macaques. Hear. Res. 401, 108156 (2021).

    Article  PubMed  Google Scholar 

  44. Hauser, S. N., Burton, J. A., Mercer, E. T. & Ramachandran, R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear. Res. 357, 33–45 (2018).

    Article  PubMed  Google Scholar 

  45. Burton, J. A., Mackey, C. A., MacDonald, K. S., Hackett, T. A. & Ramachandran, R. Changes in audiometric threshold and frequency selectivity correlate with cochlear histopathology in macaque monkeys with permanent noise-induced hearing loss. Hear. Res. 398, 108082 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. MacLean, E. L., Prior, S. R., Platt, M. L. & Brannon, E. M. Primate location preference in a double-tier cage: the effects of illumination and cage height. J. Appl. Anim. Welf. Sci. 12, 73–81 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Norton, J. N., Kinard, W. L. & Reynolds, R. P. Comparative vibration levels perceived among species in a laboratory animal facility. J. Am. Assoc. Lab. Anim. Sci. 50, 653–659 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Centers for Disease Control and Prevention (CDC) Criteria for a Recommended Standard: Occupational Noise Exposure, Revised Criteria 1998 (United States Department of Health and Human Services,1998); www.cdc.gov/niosh

  49. Winslow, J. T., Parr, L. A. & Davis, M. Acoustic startle, prepulse inhibition, and fear-potentiated startle measured in rhesus monkeys. Biol. Psychiatry 51, 859–866 (2002).

    Article  PubMed  Google Scholar 

  50. Milligan, S. R., Sales, G. D. & Khirnykh, K. Sound levels in rooms housing laboratory animals: an uncontrolled daily variable. Physiol Behav. 53, 1067–1076 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Occupational Safety and Health Administration (OSHA). Occupational Noise Exposure: Proposed Requirements and Procedures. Federal Register, 39 (207: 37773–37784) (1974).

  52. Environmental Protection Agency (EPA) Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare With an Adequate Margin of Safety (United States Environmental Protection Agency, 1974); https://www.nonoise.org/library/levels74/levels74.htm

  53. Berglund, B., Lindvall, T. & Schwela, D. H. WHO Guidelines for Community Noise (World Health Organization, 1999); http://whqlibdoc.who.int/hq/1999/a68672.pdf

  54. Furman, A. C., Kujawa, S. G. & Liberman, M. C. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. 110, 577–586 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu, P. Z., O’Malley, J. T., de Gruttola, V. & Liberman, M. C. Primary neural degeneration in noise-exposed human cochleas: Correlations with outer hair cell loss and word-discrimination scores. J. Neurosci. 41, 4439–4447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dobie, R. A. & Humes, L. E. Commentary on the regulatory implications of noise induced cochlear neuropathy. Int. J. Audiol. 56, 74–78 (2017).

    Article  PubMed  Google Scholar 

  57. Fernandez, K. A. et al. Noise-induced cochlear synaptopathy with and without sensory cell loss. Neuroscience 15, 43–57 (2020).

    Article  Google Scholar 

  58. Loud Noise Can Cause Hearing Loss (Centers for Disease Control and Prevention, 2019); https://www.cdc.gov/nceh/hearing_loss/

  59. Hubrecht, R. C. & Carter, E. The 3Rs and humane experimental technique: implementing change. Animals 9, 754 (2019).

    Article  PubMed Central  Google Scholar 

  60. Prescott, M. J., Clark, C., Dowling, W. E. & Shurtleff, A. C. Opportunities for refinement of non-human primate vaccine studies. Vaccines 9, 284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jennings, M. et al. Refinements in husbandry, care and common procedures for non-human primates: ninth report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab. Anim. 43, 1–47 (2009).

    Article  PubMed  Google Scholar 

  62. Luchins, K. R., Baker, K. C., Gilbert, M. H., Blanchard, J. L. & Bohm, R. P. Manzanita wood: a sanitizable enrichment option for nonhuman primates. J. Am. Assoc. Lab. Anim. Sci. 50, 884–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Turner and the team at Turner Scientific for their loan of and assistance with the Sensory Sentinel device. We thank J. Parker and the Vanderbilt University Medical Center Division of Animal Care husbandry staff for their accommodation of this study. This study was supported by NIH R01 DC 015988. J.A.B. was supported by NIH F32 DC 019817, and C.A.M. was supported by F31 DC 019823-01A1.

Author information

Authors and Affiliations

Authors

Contributions

A.R.M., J.A.B. and R.R. conceptualized and designed the study. A.R.M. and J.A.B. collected the data. A.R.M., J.A.B. and C.A.M. performed the analysis, with input from R.R. A.R.M. and J.A.B. wrote and edited the paper. C.A.M. and R.R. edited the paper.

Corresponding author

Correspondence to Ramnarayan Ramachandran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Jan Langermans and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLeod, A.R., Burton, J.A., Mackey, C.A. et al. An assessment of ambient noise and other environmental variables in a nonhuman primate housing facility. Lab Anim 51, 219–226 (2022). https://doi.org/10.1038/s41684-022-01017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-022-01017-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing