Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical practices in neonatal oxygenation: where have we failed? What can we do?

Abstract

Introduction:

Oxygen is among the most frequently used therapies in neonates worldwide. Nevertheless, many times it is used unnecessarily. Neonatal practices have changed over the last several years; treatments originally believed to be beneficial have been discarded.

Study Design:

Oxygen utilized ‘just in case’ or ‘prophylactically’ can lead to great damage previously ignored and/or unseen by healthcare providers.

Conclusion:

It is imperative to improve education on neonatal oxygenation and saturation monitoring. It is also important not to depend on old assumptions, which were not based on evidences. The potential for unseen damage at the cellular and tissue levels cannot be ignored. Therapies that prove to be outdated or even dangerous must be eliminated while further research and confirmation of the best practices are determined. Freedom to choose can come at a price.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Comroe Jr JH . How to delay progress without even trying. In: Retrospectroscope. Insights into Medical Discovery. Von Gehr Press: Mento Park, California, 1977, pp 114–119.

    Google Scholar 

  2. Sola A, Lee BH . Education in oxygenation has been insufficient: A need for darning. Presented at: the 2007 Society for Pediatric Research: Toronto, Canada.

  3. Comroe Jr JH, Bahnson ER, Coates Jr EO . Mental changes occurring in chronically anoxemic patients during oxygen therapy. J Am Med Assoc 1950; 143: 1044–1048.

    Article  PubMed  Google Scholar 

  4. Aust AE, Eveleigh JF . Mechanisms of DNA oxidation. Exp Biol Med 1999; 222: 246–252.

    Article  CAS  Google Scholar 

  5. Stadtman ER, Oliver CN . Metal-catalyzed oxidation of proteins. J Biol Chem 1991; 266: 2005–2008.

    CAS  PubMed  Google Scholar 

  6. Sola A, Rogido M, Deulofeut R . Oxygen as a neonatal health hazard: call for detente in clinical practice. Acta Paediatr 2007; 96: 798–800.

    Article  Google Scholar 

  7. Sola A, Chow L, Rogido M . Pulse oximetry in neonatal care in 2005. A comprehensive state of the art review. An Pediatr (Barc) 2005; 62: 266–281.

    Article  CAS  Google Scholar 

  8. Bohnhorst B, Peter CS, Poets CF . Detection of hyperoxaemia in neonates: data from three new pulse oximeters. Arch Dis Child Fetal Neonatal Ed 2002; 87 (3): F217–F219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Workie FA, Rais-Bahrami K, Short BL . Clinical use of new-generation pulse oximeters in the neonatal intensive care unit. Am J Perinatol 2005; 22 (7): 357–360.

    Article  PubMed  Google Scholar 

  10. Robertson FA, Hoffman GM . Clinical evaluation of the effects of signal integrity and saturation on data availability and accuracy of Masimo SE and Nellcor N-395 oximeters in Children. Anesth Analg 2004; 98 (3): 617–622.

    Article  PubMed  Google Scholar 

  11. Hay Jr WW, Rodden DJ, Collins SM, Melara DL, Hale KA, Fashaw LM . Reliability of conventional and new pulse oximetry in neonatal patients. J Perinatol 2002; 22 (5): 360–366.

    Article  PubMed  Google Scholar 

  12. Fowler WS, Comroe JH . Lung function studies. I. The rate of increase of arterial oxygen saturation during the inhalation of 100% O2 . J Clin Invest 1948; 27: 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicolini U, Nicolaidis P, Fisk N, Vaughan JI, Fusi L, Gleeson R et al. Limited role of fetal blood sampling in prediction of outcome in intrauterine growth retardation. Lancet 1990; 336: 768–772.

    Article  CAS  PubMed  Google Scholar 

  14. Kamlin CO, O’Donnell CP, Davis PG, Morley CJ . Oxygen saturation in healthy infants immediately after birth. J Pediatr 2006; 148 (5): 585–589.

    Article  PubMed  Google Scholar 

  15. Mariani G, Dik PB, Ezquer A, Aguirre A, Esteban ML, Perez C et al. Pre-ductal and post-ductal O2 saturation in healthy term neonates after birth. J Pediatr 2007; 150 (4): 418–421.

    Article  PubMed  Google Scholar 

  16. Vijayakumar E, Ward GJ, Bullock CE, Patterson ML . Pulse oximeter in infants <1500 gm birth weight on supplemental oxygen: a national survey. J Perinatol 1997; 17: 341–345.

    CAS  PubMed  Google Scholar 

  17. Castillo A, Sola A, Baquero H et al. Pulse oximetry saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: Is 85% to 93% an acceptable range?. Pediatrics (in press).

  18. Sola A, Chow L, Rogido M . Retinopathy of prematurity and oxygen therapy: a changing relationship. An Pediatr (Barc) 2005; 62: 48–63.

    Article  CAS  Google Scholar 

  19. Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M . Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 2005; 115: 997–1003.

    Article  PubMed  Google Scholar 

  20. Gressens P, Rogido M, Paindaveine B, Sola A . The impact of neonatal intensive care practices on the developing brain. J Pediatr 2002; 140 (6): 646–653.

    Article  PubMed  Google Scholar 

  21. Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK . Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson's disease accelerate age-related neurodegeneration. J Neurosci 2007; 27 (26): 6914–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA et al. Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 2007; 28: 907–913.

    Article  CAS  PubMed  Google Scholar 

  23. Sola A, Rogido MR . Iron, oxidation and preterm infants. J Pediatr (in press).

  24. Sola A . Turn off the lights and the oxygen, when not needed: phototherapy and oxidative stress in the neonate. J Pediatr (Rio J) 2007; 83 (4): 293–296.

    Article  Google Scholar 

  25. Gilbert C, Rahi J, Eckstein M, O'Sullivan J, Foster A . Retinopathy of prematurity in middle-income countries. Lancet 1997; 350: 12–14.

    Article  CAS  PubMed  Google Scholar 

  26. Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Quintos M, et al., Early treatment for Retinopathy of Prematurity Cooperative Group. The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics 2005; 116: 15–23.

    Article  PubMed  Google Scholar 

  27. Silverman WA . Retrolental Fibroplasia: A Modern Parable. Grune and Startton: New York, 1980. Available at: http://www.neonatology.org/classic/parable/default.html.

    Google Scholar 

  28. Cross KW . Cost of preventing retrolental fibroplasia? Lancet 1973; 2: 946–954.

    Google Scholar 

  29. Bolton DPG, Cross KW . Further observations on cost of preventing retrolental fibroplasia. Lancet 1974; 1: 445–448.

    Article  CAS  PubMed  Google Scholar 

  30. Palmer EA, Flynn JT, Hardy RJ, Phelps DL, Phillips CL, Schaffer DB et al. Incidence and early course of retinopathy of prematurity. The cryotherapy for retinopathy of prematurity cooperative group. Ophthalmology 1991; 98: 1628–1640.

    Article  CAS  PubMed  Google Scholar 

  31. Flynn JT, Bancalari E, Bachynski BN, Buckley EB, Bawol R, Goldberg R et al. Retinopathy of prematurity. Diagnosis, severity and natural history. Ophthalmology 1987; 94: 620–629.

    Article  CAS  PubMed  Google Scholar 

  32. Flynn JT . Acute proliferative retrolental fibroplasia: multivariate risk analysis. Trans Am Ophthalmol Soc 1983; 81: 549–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schaffer DB, Palmer EA, Plotsky DF, Metz HS, Flynn JT, Tung B et al. Prognostic factors in the natural course of retinopathy of prematurity. The cryotherapy for retinopathy of prematury cooperative group. Ophtalmology 1993; 100 (2): 230–237.

    Article  CAS  Google Scholar 

  34. Flynn JT, Bancalari E, Snyder E, Goldberg RN, Feuer W, Cassady J et al. A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med 1992; 326: 1050–1054.

    Article  CAS  PubMed  Google Scholar 

  35. Smith LE . Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res 2004; 14 (suppl A): S140–S144.

    Article  CAS  PubMed  Google Scholar 

  36. Penn JS, Henry MM, Toldman BL . Exposure to alternating hypoxia and hyperoxia cause severe proliferative retinopathy in the newborn rat. Pediatr Res 1994; 36: 731–774.

    Article  Google Scholar 

  37. York JR, Landers S, Kirby RS, Arbogast PG, Penn JS . Arterial oxygen fluctuation and retinopathy of prematurity in very low birth weight infants. J Perinatol 2004; 24: 82–87.

    Article  PubMed  Google Scholar 

  38. Saito Y, Omoto T, Cho Y, Hatsukawa Y, Fuyimura M, Takeuchi T . The progression of retinopathy of prematurity and fluctuation in blood gas tension. Graefes Arch Clin Exp Ophthalmol 1993; 231: 151–156.

    Article  CAS  PubMed  Google Scholar 

  39. Chow LC, Wright WK, Sola A . Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 2003; 111: 339–345.

    Article  PubMed  Google Scholar 

  40. Deulofeut R, Critz A, Adams-Chapman I, Sola A . Avoiding hyperoxia in infants ≤1250 grams is associated with improved short- and long term outcomes. J Perinatol 2006; 26: 700–705.

    Article  CAS  PubMed  Google Scholar 

  41. Kim TI, Sohn J, PI SY, Yoon YH . Postnatal risk factors of retinopathy of prematurity. Paediatr Perinat Epidemiol 2004; 18: 130–134.

    Article  PubMed  Google Scholar 

  42. Tin W, Milligan WA, Pennefather P, Hey E . Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 2001; 84: F106–F110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gramlicht T . Oxygen therapy. In: Barnhart SL, Czervinske MP (eds). Perinatal and Pediatric Respiratory Care. WB Saunders: Philadelphia, PA, 1995, pp 156–179.

    Google Scholar 

  44. Wright KW, Sami D, Thompson L, Ramanathan R, Joseph R, Farzavandi S . A physiologic reduced oxygen protocol decreases the incidence of threshold retinopathy of prematurity. Trans Am Ophthalmol Soc 2006; 104: 78–84.

    PubMed  PubMed Central  Google Scholar 

  45. Vanderveen DK, Mansfield TA, Eichenwald EC . Lower oxygen saturation alarm limits decrease the severity of retinopathy of prematurity. J AAPOS 2006; 10 (5): 445–448.

    Article  PubMed  Google Scholar 

  46. Saugstad OD . Oxygen and retinopathy of prematurity. J Perinatol 2006; 26 (suppl 1): S46–S50.

    Article  CAS  PubMed  Google Scholar 

  47. Wallace DK, Veness-Meehan KA, Miller WC . Incidence of severe retinopathy of prematurity before and after a modest reduction in target oxygen saturation levels. J AAPOS 2007; 11 (2): 170–174.

    Article  PubMed  Google Scholar 

  48. Deulofeut R, Sola A . Risk for late bacterial sepsis in infants <1000 grs: another beneficial effect of avoiding hyperoxia? E-PAS 2006; 59: 2851.14830.

    Google Scholar 

  49. Deulofeut R, Dudell G, Sola A . Treatment-by-gender effect when aiming to avoid hyperoxia in preterm infants in the NICU. Acta Paediatr 2007; 96: 990–994.

    Article  PubMed  Google Scholar 

  50. Collins MP, Lorenz JM, Jetton JR, Paneth N . Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 2001; 50: 712–719.

    Article  CAS  PubMed  Google Scholar 

  51. Klinger G, Beyene J, Shah P, Perlman M . Do hyperoxemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 2005; 90: F49–F52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Macey PM, Woo MA, Harper RM . Hyperoxic brain effects are normalized by addition of CO2 . PLoS Med 2007; 4 (5): e173.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saugstad OD, Ramji S, Vento M . Resuscitation of depressed newborn infants with ambient air or pure oxygen: a metaanalysis. Biol Neonate 2005; 87: 27–34.

    Article  PubMed  Google Scholar 

  54. Saugstad OD . Optimal oxygenation at birth and in the neonatal period. Neonatology 2007; 91 (4): 319–322.

    Article  CAS  PubMed  Google Scholar 

  55. Saugstad OD, Ramji S, Vento M . Oxygen for newborn resuscitation: how much is enough? Pediatrics 2006; 118: 789–792.

    Article  PubMed  Google Scholar 

  56. Sola A, Deulofeut R . Oxygen and oxygenation in the delivery room. J Pediatr 2006; 148: 564–565.

    Article  PubMed  Google Scholar 

  57. Rabi Y, Rabi DR, Yee W . Room air resuscitation of the depressed newborn: A systematic review and meta-analysis. Resuscitation 2007; 72: 353–363.

    Article  PubMed  Google Scholar 

  58. Vento M, Asensi M, Sastre J, Garcia-Sala F, Pallardo V, Viña J . Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term infants. Pediatrics 2001; 107: 642–647.

    Article  CAS  PubMed  Google Scholar 

  59. Cheung PY, Stevens JP, Haase E, Stang L, Bigam DL, Etches W et al. Platelet dysfunction in asphyxiated newborn piglets resuscitated with 21% and 100% oxygen. Pediatr Res 2006; 59: 540–636.

    Article  Google Scholar 

  60. Markus T, Hansson S, Amer-Wählin I, Hellström-Westas L, Saugstad OD, Ley D . Cerebral inflammatory response after fetal asphyxia and hyperoxic resuscitation in newborn sheep. Pediatr Res 2007; 62 (1): 71–77.

    Article  PubMed  Google Scholar 

  61. Andressen JH, Solberg R, Loberg EM, Munkeby BH, Stray-Pedersen B, Saugstad OD . Resuscitation with 21 or 100% oxygen in hypoxic nicotine-pretreated newborn piglets: possible neuroprotective effects of nicotine. Neonatology 2007; 93: 36–44.

    Article  Google Scholar 

  62. Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin III FC et al. Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res 2006; 59: 137–141.

    Article  PubMed  Google Scholar 

  63. Saugstad OD . Take a breath—but do not add oxygen (if not needed). Acta Paediatr 2007; 96: 789–800.

    Google Scholar 

  64. Naumburg E, Bellocco R, Cnattingius S, Johnson A, Ekbom A . Supplementary oxygen and risks of childhood lymphatic leukaemia. Acta Pediatr 2002; 91: 1233–1328.

    Article  Google Scholar 

  65. Spector LG, Klebanoff MA, Feussner JH, Georgieff MK, Ross JA . Childhood cancer following neonatal oxygen supplementation. J Pediatr 2005; 147: 27–31.

    Article  PubMed  Google Scholar 

  66. Paneth N . The evidence mounts against use of pure oxygen in newborn resuscitation. J Pediatr 2005; 147: 4–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sola, A., Saldeño, Y. & Favareto, V. Clinical practices in neonatal oxygenation: where have we failed? What can we do?. J Perinatol 28 (Suppl 1), S28–S34 (2008). https://doi.org/10.1038/jp.2008.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.47

Keywords

This article is cited by

Search

Quick links