Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group

Abstract

Circulatory transition after birth presents a critical period whereby the pulmonary vascular bed and right ventricle must adapt to rapidly changing loading conditions. Failure of postnatal transition may present as hypoxemic respiratory failure, with disordered pulmonary and systemic blood flow. In this review, we present the biological and clinical contributors to pathophysiology and present a management framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The vicious cycle of neonatal acute pulmonary hypertension.
Fig. 2: Suggested approach to diagnosis of a neonate presenting with acute hypoxemia.
Fig. 3: Relationship between lung volume and pulmonary vascular resistance.
Fig. 4: Therapeutic strategies for the treatment of pulmonary hypertension refractory to inhaled nitric oxide therapy.

Similar content being viewed by others

References

  1. Lakshminrusimha S, Steinhorn RH. Pulmonary vascular biology during neonatal transition. Clin Perinatol. 1999;26:601–19.

    Article  CAS  PubMed  Google Scholar 

  2. Haworth SG. Development of the normal and hypertensive pulmonary vasculature. Exp Physiol. 1995;80:843–53.

    Article  CAS  PubMed  Google Scholar 

  3. Schittny JC. Development of the lung. Cell Tissue Res. 2017;367:427–44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hall SM, Hislop AA, Pierce CM, Haworth SG. Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol. 2000;23:194–203.

    Article  CAS  PubMed  Google Scholar 

  5. Hislop AA. Airway and blood vessel interaction during lung development. J Anat. 2002;201:325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Belik J, Halayko AJ, Rao K, Stephens NL. Pulmonary and systemic vascular smooth muscle mechanical characteristics in newborn sheep. Am J Physiol. 1992;263:H881–6.

    CAS  PubMed  Google Scholar 

  7. Lakshminrusimha S. The pulmonary circulation in neonatal respiratory failure. Clin Perinatol. 2012;39:655–83.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lewis AB, Heymann MA, Rudolph AM. Gestational changes in pulmonary vascular responses in fetal lambs in utero. Circ Res. 1976;39:536–41.

    Article  CAS  PubMed  Google Scholar 

  9. Morin FC 3rd, Egan EA. Pulmonary hemodynamics in fetal lambs during development at normal and increased oxygen tension. J Appl Physiol (1985). 1992;73:213–8.

    Article  Google Scholar 

  10. Storme L, Rairigh RL, Parker TA, Kinsella JP, Abman SH. In vivo evidence for a myogenic response in the fetal pulmonary circulation. Pediatr Res. 1999;45:425–31.

    Article  CAS  PubMed  Google Scholar 

  11. Mathew R, Altura BM. Physiology and pathophysiology of pulmonary circulation. Microcirc Endothelium Lymphatics. 1990;6:211–52.

    CAS  PubMed  Google Scholar 

  12. Fediuk J, Dakshinamurti S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can J Physiol Pharm. 2015;93:185–94.

    Article  CAS  Google Scholar 

  13. Basu S, Datta BN, Khandelwal N. Morphologic changes in pulmonary vasculature with arteriographic correlation. Angiology. 1996;47:375–80.

    Article  CAS  PubMed  Google Scholar 

  14. Allen K, Haworth SG. Human postnatal pulmonary arterial remodeling. Ultrastructural studies of smooth muscle cell and connective tissue maturation. Lab Invest. 1988;59:702–9.

    CAS  PubMed  Google Scholar 

  15. Michel RP, Gordon JB, Chu K. Development of the pulmonary vasculature in newborn lambs: structure-function relationships. J Appl Physiol (1985). 1991;70:1255–64.

    Article  CAS  Google Scholar 

  16. Haworth SG, Hislop AA. Adaptation of the pulmonary circulation to extra-uterine life in the pig and its relevance to the human infant. Cardiovasc Res. 1981;15:108–19.

    Article  CAS  PubMed  Google Scholar 

  17. Harting MT. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin Pediatr Surg. 2017;26:147–53.

    Article  PubMed  Google Scholar 

  18. Sluiter I, van der Horst I, van der Voorn P, Boerema-de Munck A, Buscop-van Kempen M, de Krijger R, et al. Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia. Exp Mol Pathol. 2013;94:195–202.

    Article  CAS  PubMed  Google Scholar 

  19. Mous DS, Kool HM, Wijnen R, Tibboel D, Rottier RJ. Pulmonary vascular development in congenital diaphragmatic hernia. Eur Respir Rev. 2018;27:170104 https://doi.org/10.1183/16000617.0104-2017.

  20. de Lagausie P, de Buys-Roessingh A, Ferkdadji L, Saada J, Aisenfisz S, Martinez-Vinson C, et al. Endothelin receptor expression in human lungs of newborns with congenital diaphragmatic hernia. J Pathol. 2005;205:112–8.

    Article  PubMed  CAS  Google Scholar 

  21. Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med. 2010;182:555–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MJ, Wort SJ. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302:L803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 2017;151:181–92.

    Article  PubMed  Google Scholar 

  24. Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J. 2016;47:288–303.

    Article  CAS  PubMed  Google Scholar 

  25. Zapol WM, Kobayashi K, Snider MT, Greene R, Laver MB. Vascular obstruction causes pulmonary hypertension in severe acute respiratory failure. Chest. 1977;71:306–7.

    Article  CAS  PubMed  Google Scholar 

  26. Brimioulle S, LeJeune P, Naeije R. Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J Appl Physiol (1985). 1996;81:1535–43.

    Article  CAS  Google Scholar 

  27. Rossi P, Persson B, Boels PJ, Arner A, Weitzberg E, Oldner A. Endotoxemic pulmonary hypertension is largely mediated by endothelin-induced venous constriction. Intensive Care Med. 2008;34:873–80.

    Article  CAS  PubMed  Google Scholar 

  28. Kuebler WM, Ying X, Singh B, Issekutz AC, Bhattacharya J. Pressure is proinflammatory in lung venular capillaries. J Clin Invest. 1999;104:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomashefski JF Jr., Davies P, Boggis C, Greene R, Zapol WM, Reid LM. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol. 1983;112:112–26.

    PubMed  PubMed Central  Google Scholar 

  30. Kulik TJ. Pulmonary hypertension caused by pulmonary venous hypertension. Pulm circulation. 2014;4:581–95.

    Article  Google Scholar 

  31. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    Article  PubMed  Google Scholar 

  32. Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP. Homeometric autoregulation in the heart. Circ Res. 1960;8:1077–91.

    Article  CAS  PubMed  Google Scholar 

  33. Brinker JA, Weiss JL, Lappe DL, Rabson JL, Summer WR, Permutt S, et al. Leftward septal displacement during right ventricular loading in man. Circulation. 1980;61:626–33.

    Article  CAS  PubMed  Google Scholar 

  34. Bronicki RA, Anas NG. Cardiopulmonary interaction. Pediatr Crit Care Med. 2009;10:313–22.

    Article  PubMed  Google Scholar 

  35. Brooks H, Kirk ES, Vokonas PS, Urschel CW, Sonnenblick EH. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest. 1971;50:2176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naeije R, Manes A. The right ventricle in pulmonary arterial hypertension. Eur Respir Rev. 2014;23:476–87.

    Article  PubMed  Google Scholar 

  37. Hirsch LJ, Rooney MW, Wat SS, Kleinmann B, Mathru M. Norepinephrine and phenylephrine effects on right ventricular function in experimental canine pulmonary embolism. Chest. 1991;100:796–801.

    Article  CAS  PubMed  Google Scholar 

  38. Schreuder WO, Schneider AJ, Groeneveld AB, Thijs LG. Effect of dopamine vs norepinephrine on hemodynamics in septic shock. Emphasis on right ventricular performance. Chest. 1989;95:1282–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tourneux P, Rakza T, Bouissou A, Krim G, Storme L. Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension. J Pediatr. 2008;153:345–9.

    Article  CAS  PubMed  Google Scholar 

  40. Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 1981;63:87–95.

    Article  CAS  PubMed  Google Scholar 

  41. Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure–from pathophysiology to new treatments. Intensive Care Med. 2004;30:185–96.

    Article  PubMed  Google Scholar 

  42. Cheung PY, Barrington K. The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets. Crit Care. 2001;5:158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spong CY. Preterm premature rupture of the fetal membranes complicated by oligohydramnios. Clin Perinatol. 2001;28:753–9 vi.

    Article  CAS  PubMed  Google Scholar 

  44. Niles KM, Blaser S, Shannon P, Chitayat D. Fetal arthrogryposis multiplex congenita/fetal akinesia deformation sequence (FADS) - Aetiology, diagnosis and management. Prenat Diagn. 2019;39:720–31.

    Article  PubMed  Google Scholar 

  45. Waters TP, Mercer B. Preterm PROM: prediction, prevention, principles. Clin Obstet Gynecol. 2011;54:307–12.

    Article  PubMed  Google Scholar 

  46. Lindenskov PH, Castellheim A, Saugstad OD, Mollnes TE. Meconium aspiration syndrome: possible pathophysiological mechanisms and future potential therapies. Neonatology. 2015;107:225–30.

    Article  CAS  Google Scholar 

  47. Pedra SR, Smallhorn JF, Ryan G, Chitayat D, Taylor GP, Khan R, et al. Fetal cardiomyopathies: pathogenic mechanisms, hemodynamic findings, and clinical outcome. Circulation. 2002;106:585–91.

    Article  PubMed  Google Scholar 

  48. Huybrechts KF, Bateman BT, Palmsten K, Desai RJ, Patorno E, Gopalakrishnan C, et al. Antidepressant use late in pregnancy and risk of persistent pulmonary hypertension of the newborn. JAMA. 2015;313:2142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barberi I, Calabro MP, Cordaro S, Gitto E, Sottile A, Prudente D, et al. Myocardial ischaemia in neonates with perinatal asphyxia. Electrocardiographic, echocardiographic and enzymatic correlations. Eur J Pediatr. 1999;158:742–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lakshminrusimha S, Konduri GG, Steinhorn RH. Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J Perinatol. 2016;36:S12–9.

    Article  PubMed  Google Scholar 

  51. Lakshminrusimha S, Saugstad OD. The fetal circulation, pathophysiology of hypoxemic respiratory failure and pulmonary hypertension in neonates, and the role of oxygen therapy. J Perinatol. 2016;36:S3–s11.

    Article  PubMed  CAS  Google Scholar 

  52. Corredera A, Rodriguez MJ, Arevalo P, Llorente B, Moro M, Arruza L. [Functional echocardiography in neonatal intensive care: 1 year experience in a unit in Spain]. Pediatr (Barc). 2014;81:167–73.

    Article  CAS  Google Scholar 

  53. Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Eur J Echocardiogr. 2011;12:715–36.

    Article  PubMed  Google Scholar 

  54. Musewe NN, Poppe D, Smallhorn JF, Hellman J, Whyte H, Smith B, et al. Doppler echocardiographic measurement of pulmonary artery pressure from ductal Doppler velocities in the newborn. J Am Coll Cardiol. 1990;15:446–56.

    Article  CAS  PubMed  Google Scholar 

  55. Musewe NN, Smallhorn JF, Benson LN, Burrows PE, Freedom RM. Validation of Doppler-derived pulmonary arterial pressure in patients with ductus arteriosus under different hemodynamic states. Circulation. 1987;76:1081–91.

    Article  CAS  PubMed  Google Scholar 

  56. Parasuraman S, Walker S, Loudon BL, Gollop ND, Wilson AM, Lowery C, et al. Assessment of pulmonary artery pressure by echocardiography-A comprehensive review. Int J Cardiol Heart Vasc. 2016;12:45–51.

    PubMed  PubMed Central  Google Scholar 

  57. Smith A, Purna JR, Castaldo MP, Ibarra-Rios D, Giesinger RE, Rios DR, et al. Accuracy and reliability of qualitative echocardiography assessment of right ventricular size and function in neonates. Echocardiography. 2019;36:1346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–27.

    Article  CAS  PubMed  Google Scholar 

  59. Aggarwal S, Natarajan G. Echocardiographic correlates of persistent pulmonary hypertension of the newborn. Early Hum Dev. 2015;91:285–9.

    Article  PubMed  Google Scholar 

  60. McCrary AW, Malowitz JR, Hornick CP, Hill KD, Cotten CM, Tatum GH, et al. Differences in eccentricity index and systolic-diastolic ratio in extremely low-birth-weight infants with bronchopulmonary dysplasia at risk of pulmonary hypertension. Am J Perinatol. 2016;33:57–62.

    Article  CAS  PubMed  Google Scholar 

  61. Skinner JR, Boys RJ, Heads A, Hey EN, Hunter S. Estimation of pulmonary arterial pressure in the newborn: study of the repeatability of four Doppler echocardiographic techniques. Pediatr Cardiol. 1996;17:360–9.

    Article  CAS  PubMed  Google Scholar 

  62. Levy PT, Patel MD, Singh GK. Reply. J Pediatr. 2018;202:336–7.

    Article  PubMed  Google Scholar 

  63. Reller MD, Morton MJ, Reid DL, Thornburg KL. Fetal lamb ventricles respond differently to filling and arterial pressures and to in utero ventilation. Pediatr Res. 1987;22:621–6.

    Article  CAS  PubMed  Google Scholar 

  64. Pinson CW, Morton MJ, Thornburg KL. An anatomic basis for fetal right ventricular dominance and arterial pressure sensitivity. J Dev Physiol. 1987;9:253–69.

    CAS  PubMed  Google Scholar 

  65. Jain A, Mohamed A, El-Khuffash A, Connelly KA, Dallaire F, Jankov RP, et al. A comprehensive echocardiographic protocol for assessing neonatal right ventricular dimensions and function in the transitional period: normative data and z scores. J Am Soc Echocardiogr. 2014;27:1293–304.

    Article  PubMed  Google Scholar 

  66. Slama M, Susic D, Varagic J, Ahn J, Frohlich ED. Echocardiographic measurement of cardiac output in rats. Am J Physiol Heart Circ Physiol. 2003;284:H691–7.

    Article  CAS  PubMed  Google Scholar 

  67. Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29:1426–34.

    Article  PubMed  Google Scholar 

  68. Creamer KM, McCloud LL, Fisher LE, Ehrhart IC. Ventilation above closing volume reduces pulmonary vascular resistance hysteresis. Am J Respir Crit Care Med. 1998;158:1114–9.

    Article  CAS  PubMed  Google Scholar 

  69. Hoffman GM, Nelin LD. Mean airway pressure and response to inhaled nitric oxide in neonatal and pediatric patients. Lung. 2005;183:441–53.

    Article  CAS  PubMed  Google Scholar 

  70. Whittenberger JL, Mc GM, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–82.

    Article  CAS  PubMed  Google Scholar 

  71. Reller MD, Donovan EF, Kotagal UR. Influence of airway pressure waveform on cardiac output during positive pressure ventilation of healthy newborn dogs. Pediatr Res. 1985;19:337–41.

    Article  CAS  PubMed  Google Scholar 

  72. El Shahed AI, Dargaville PA, Ohlsson A, Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. The Cochrane database of systematic reviews. 2014;2014:Cd002054.

  73. Natarajan CK, Sankar MJ, Jain K, Agarwal R, Paul VK. Surfactant therapy and antibiotics in neonates with meconium aspiration syndrome: a systematic review and meta-analysis. J Perinatol. 2016;36:S49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tarawneh A, Kaczmarek J, Bottino MN, Sant’anna GM. Severe airway obstruction during surfactant administration using a standardized protocol: a prospective, observational study. J Perinatol. 2012;32:270–5.

    Article  CAS  PubMed  Google Scholar 

  75. Mokra D, Mokry J. Glucocorticoids in the treatment of neonatal meconium aspiration syndrome. Eur J Pediatr. 2011;170:1495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakwan N, Chaiwiriyawong P. An international survey on persistent pulmonary hypertension of the newborn: a need for an evidence-based management. J neonatal-Perinat Med. 2016;9:243–50.

    Article  CAS  Google Scholar 

  77. Alapati D, Jassar R, Shaffer TH. Management of supplemental oxygen for infants with persistent pulmonary hypertension of newborn: a survey. Am J Perinatol. 2017;34:276–82.

    PubMed  Google Scholar 

  78. Hauge A. Hypoxia and pulmonary vascular resistance. The relative effects of pulmonary arterial and alveolar PO2. Acta Physiol Scand. 1969;76:121–30.

    Article  CAS  PubMed  Google Scholar 

  79. Rudolph AM, Yuan S. Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest. 1966;45:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Belik J, Jankov RP, Pan J, Tanswell AK. Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic Biol Med. 2004;37:1384–92.

    Article  CAS  PubMed  Google Scholar 

  81. Stadler SS, Macri CJ, Kopelman JN, Mitchell A, Chakraborty PK, Satin AJ. Effect of meconium on the hemoglobin-oxygen association curve. J Matern Fetal Med. 1999;8:253–5.

    CAS  PubMed  Google Scholar 

  82. Walsh BK. Oxygen Administration. Neonatal and Pediatric Respiratory Care. St. Louis, Missouri: Elsevier Health Sciences; 2014. p. 148–62.

    Google Scholar 

  83. Gien J, Kinsella JP. Differences in preductal and postductal arterial blood gas measurements in infants with severe congenital diaphragmatic hernia. Arch Dis Child Fetal Neonatal Ed. 2016;101:F314–8.

    Article  PubMed  Google Scholar 

  84. Mora GA, Pizarro C, Jacobs ML, Norwood WI. Experimental model of single ventricle. Influence of carbon dioxide on pulmonary vascular dynamics. Circulation. 1994;90:Ii43–6.

    CAS  PubMed  Google Scholar 

  85. Peckham GJ, Fox WW. Physiologic factors affecting pulmonary artery pressure in infants with persistent pulmonary hypertension. J Pediatr. 1978;93:1005–10.

    Article  CAS  PubMed  Google Scholar 

  86. Barrington KJ, Finer N, Pennaforte T, Altit G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane database Syst Rev. 2017;1:Cd000399.

    PubMed  Google Scholar 

  87. Mónica FZ, Bian K, Murad F. The endothelium-dependent nitric oxide-cGMP pathway. Adv Pharm. 2016;77:1–27.

    Article  CAS  Google Scholar 

  88. Creagh-Brown BC, Griffiths MJ, Evans TW. Bench-to-bedside review: Inhaled nitric oxide therapy in adults. Crit Care. 2009;13:221.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Robbins CG, Davis JM, Merritt TA, Amirkhanian JD, Sahgal N, Morin FC 3rd, et al. Combined effects of nitric oxide and hyperoxia on surfactant function and pulmonary inflammation. Am J Physiol. 1995;269:L545–50.

    CAS  PubMed  Google Scholar 

  90. Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA. 1998;95:7631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahearn J, Panda M, Carlisle H, Chaudhari T. Impact of inhaled nitric oxide stewardship programme in a neonatal intensive care unit. J Paediatr Child Health. 2020;56:265–71.

    Article  PubMed  Google Scholar 

  92. Elmekkawi A, More K, Shea J, Sperling C, Da Silva Z, Finelli M, et al. Impact of stewardship on inhaled nitric oxide utilization in a neonatal ICU. Hosp Pediatr. 2016;6:607–15.

    Article  PubMed  Google Scholar 

  93. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation. 1999;99:641–8.

    Article  CAS  PubMed  Google Scholar 

  94. Pieske B, Trost S, Schutt K, Minami K, Just H, Hasenfuss G. Influence of forskolin on the force-frequency behavior in nonfailing and end-stage failing human myocardium. Basic Res Cardiol. 1998;93:66–75.

    Article  CAS  PubMed  Google Scholar 

  95. Pelletier JS, LaBossiere J, Dicken B, Gill RS, Sergi C, Tahbaz N, et al. Low-dose vasopressin improves cardiac function in newborn piglets with acute hypoxia-reoxygenation. Shock (Augusta, Ga). 2013;40:320–6.

    Article  CAS  Google Scholar 

  96. Mohamed A, Nasef N, Shah V, McNamara PJ. Vasopressin as a rescue therapy for refractory pulmonary hypertension in neonates: case series. Pediatr Crit Care Med. 2014;15:148–54.

    Article  PubMed  Google Scholar 

  97. Shivananda S, Ahliwahlia L, Kluckow M, Luc J, Jankov R, McNamara P. Variation in the management of persistent pulmonary hypertension of the newborn: a survey of physicians in Canada, Australia, and New Zealand. Am J Perinatol. 2012;29:519–26.

    PubMed  Google Scholar 

  98. Tulloh RM, Dyamenahalli U, Stuart-Smith K, Haworth SG. Adrenoceptor-stimulated endothelium-dependent relaxation in porcine intrapulmonary arteries. Pulm Pharm. 1994;7:299–303.

    Article  CAS  Google Scholar 

  99. Lakshminrusimha S, Russell JA, Wedgwood S, Gugino SF, Kazzaz JA, Davis JM, et al. Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J respiratory Crit care Med. 2006;174:1370–7.

    Article  CAS  Google Scholar 

  100. Deb B, Bradford K, Pearl RG. Additive effects of inhaled nitric oxide and intravenous milrinone in experimental pulmonary hypertension. Crit Care Med. 2000;28:795–9.

    Article  CAS  PubMed  Google Scholar 

  101. Rao S, Bartle D, Patole S. Current and future therapeutic options for persistent pulmonary hypertension in the newborn. Expert Rev Cardiovasc Ther. 2010;8:845–62.

    Article  CAS  PubMed  Google Scholar 

  102. Ogawa S, Nakanishi T, Kamata K, Takao A. Effect of milrinone on myocardial mechanical function and cyclic AMP content in the fetal rabbit. Pediatr Res. 1987;22:282–5.

    Article  CAS  PubMed  Google Scholar 

  103. Sys SU, Goenen MJ, Chalant CH, Brutsaert DL. Inotropic effects of amrinone and milrinone on contraction and relaxation of isolated cardiac muscle. Circulation. 1986;73:Iii25–35.

    CAS  PubMed  Google Scholar 

  104. McNamara PJ, Laique F, Muang-In S, Whyte HE. Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care. 2006;21:217–22.

    Article  CAS  PubMed  Google Scholar 

  105. Bischoff AR, Habib S, McNamara PJ, Giesinger RE. Hemodynamic response to milrinone for refractory hypoxemia during therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. J Perinatol. 2021;41:2345–54.

    Article  CAS  PubMed  Google Scholar 

  106. McNamara PJ, Shivananda SP, Sahni M, Freeman D, Taddio A. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide. Pediatr Crit Care Med. 2013;14:74–84.

    Article  PubMed  Google Scholar 

  107. Kelly LE, Ohlsson A, Shah PS. Sildenafil for pulmonary hypertension in neonates. Cochrane database Syst Rev. 2017;8:Cd005494.

    PubMed  Google Scholar 

  108. El-Ghandour M, Hammad B, Ghanem M, Antonios MAM. Efficacy of milrinone plus sildenafil in the treatment of neonates with persistent pulmonary hypertension in resource-limited settings: results of a randomized, double-blind trial. Paediatr Drugs. 2020;22:685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lakshminrusimha S, Mathew B, Leach CL. Pharmacologic strategies in neonatal pulmonary hypertension other than nitric oxide. Semin Perinatol. 2016;40:160–73.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ruffolo RR Jr. The pharmacology of dobutamine. Am J Med Sci. 1987;294:244–8.

    Article  PubMed  Google Scholar 

  111. Barrington KJ, Finer NN, Chan WK. A blind, randomized comparison of the circulatory effects of dopamine and epinephrine infusions in the newborn piglet during normoxia and hypoxia. Crit Care Med. 1995;23:740–8.

    Article  CAS  PubMed  Google Scholar 

  112. Cassin S, Tyler T, Leffler C, Wallis R. Pulmonary and systemic vascular responses of perinatal goats to prostaglandins E1 and E2. Am J Physiol. 1979;236:H828–32.

    CAS  PubMed  Google Scholar 

  113. Graham EM, Bradley SM, Atz AM. Preoperative management of hypoplastic left heart syndrome. Expert Opin Pharmacother. 2005;6:687–93.

    Article  CAS  PubMed  Google Scholar 

  114. Badano LP, Ginghina C, Easaw J, Muraru D, Grillo MT, Lancellotti P, et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11:27–37.

    Article  PubMed  Google Scholar 

  115. Jain A, McNamara PJ. Persistent pulmonary hypertension of the newborn: advances in diagnosis and treatment. Semin Fetal Neonatal Med. 2015;20:262–71.

    Article  PubMed  Google Scholar 

  116. Giesinger RE, More K, Odame J, Jain A, Jankov RP, McNamara PJ. Controversies in the identification and management of acute pulmonary hypertension in preterm neonates. Pediatr Res. 2017;82:901–14.

Download references

Author information

Authors and Affiliations

Authors

Contributions

This document was reviewed and approved by both the Fetus and Newborn Committee at the Canadian Pediatric Society and the Neonatal Hemodynamics Research center. All authors [AJ, REG, SD, YES, RPJ, DEW, SL, SM, MLM, JT, MN, PJM] contributed equally to the intellectual content, writing, and have approved the final version of the manuscript.

Corresponding author

Correspondence to Patrick J. McNamara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Giesinger, R.E., Dakshinamurti, S. et al. Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group. J Perinatol 42, 3–13 (2022). https://doi.org/10.1038/s41372-021-01296-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01296-z

This article is cited by

Search

Quick links