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Functional gene diversity of soil microbial
communities from five oil-contaminated fields in
China
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To compare microbial functional diversity in different oil-contaminated fields and to know the effects
of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated
fields located in five geographic regions of China. GeoChip, a high-throughput functional gene
array, was used to evaluate the microbial functional genes involved in contaminant degradation and
in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial
community structures were distinct in each oil-contaminated field, and samples were clustered by
geographic locations. The organic contaminant degradation genes were most abundant in all
samples and presented a similar pattern under oil contaminant stress among the five fields. In
addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and
dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical
correspondence analysis indicated that the microbial functional patterns were highly correlated to
the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus
contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data
can be explained by oil contamination, geographic location and soil geochemical parameters. This
study provided insights into the in situmicrobial functional structures in oil-contaminated fields and
discerned the linkages between microbial communities and environmental variables, which is
important to the application of bioremediation in oil-contaminated sites.
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Introduction

With a large demand for crude oil as an energy
source, oil contamination occurs quite often as a
result of exploration, production, maintenance,
transportation, storage and accidental release, lead-
ing to significant ecological impact (Allen et al.,
2007; Paisse et al., 2008). Oil contamination is
particularly severe and has become a global issue,
such as in Kuwait (Al-Sarawi and Massoud, 1998;
Al-Hashem et al., 2007; Din et al., 2008), India
(Gogoi et al., 2003), Libya (Hamid et al., 2008),

China (Xiong et al., 1997; Liang et al., 2009a) and the
United States (Lundegard and Johnson, 2006).

Indigenous microbial communities have an
important role in oil contaminant degradation. Once
the site is contaminated, the microbial community
composition will be greatly changed. Both labora-
tory and field studies have shown that hydrocarbon
contamination shifts the overall microbial commu-
nity structure. Certain hydrocarbon-degrading taxa
become dominant in oil-impacted environments
because of natural selection resulting from the
pressure of oil contaminants (Margesin et al., 2003;
Head et al., 2006). Other environmental variables
also influence microbial distribution, such as regio-
nal climate (Bhattacharya et al., 2003; Maila et al.,
2006), soil type and characteristics (Hamamura
et al., 2006) and vegetation (Joner et al., 2001). To
date, most of the efforts to describe microbial
communities in oil-contaminated fields have been
focused on phylogenetic composition. Information
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is still lacking with regard to microbial functional
structures and its possible relationship with environ-
mental variables in oil-contaminated fields.

Understanding the microbial functional diversity
and the factors influencing microbial functions is
important for bioremediation of oil-contaminated
soils. However, analyzing microbial functional
structure in a rapid and comprehensive manner is
difficult using conventional molecular ecology
approaches. Thus, high-throughput large-scale
sequencing and/or microarray-based metagenomics
tools are needed. GeoChip, a functional gene array,
is a powerful metagenomics technology for analyz-
ing microbial community functional structure
(He et al., 2007). GeoChip 2.0 contains 24 243
oligonucleotide (50-mer) probes, which cover
410 000 genes in 4150 functional groups involved
in nitrogen, carbon, sulfur and phosphorus cycling,
metal reduction and resistance, as well as in organic
contaminant degradation (He et al., 2007). Several
studies have demonstrated that GeoChip is an ideal
tool for dissecting the microbial community func-
tional structure in both natural and contaminated
environments (Leigh et al., 2007; Yergeau et al.,
2007; Wu et al., 2008; Zhou et al., 2008;
Van Nostrand et al., 2009; Wang et al., 2009; He
et al., 2007, 2010; Xu et al., 2010).

In this study, we determined microbial functional
gene diversity from oil-contaminated soils with
GeoChip. Samples were obtained from surface soils
of five well-known oil fields from different geo-
graphic regions of China. This study aimed at
addressing the following questions: (i) What is the
microbial functional structure in oil-contaminated
fields? (ii) How does oil contamination affect micro-
bial functional gene diversity? (iii) How do environ-
mental factors affect microbial community functional
diversity in oil-contaminated fields? Our results
indicated that microbial functional gene structure is
distinct in each oil-contaminated field. The organic
contaminant degradation genes were most abundant
in all samples and presented similar pattern under oil
contaminant stress. Moreover, such microbial func-
tional patterns were highly correlated to oil contam-
ination and environmental factors.

Materials and methods

Site description and sampling
Soil samples were obtained from oil-contaminated
sites in five oil fields (fields in areas where oil is
extracted) located at different geographic regions of
China (660–2030 km apart): Daqing (DQ) in north-
east China, Yumen (YM) and Changqing (CQ) in
northwest China, Shengli in the Yellow River area in
north China and Jianghan in the Yangtze River area
in central China (Figure 1a). The climates in the five
regions vary greatly. DQ (461350N, 1251180E) has a
temperate continental monsoon climate with a mean
annual rainfall of 427.5mm. YM (391490N, 971350E)

has a temperate continental arid climate with a
mean annual rainfall of 55.1mm. CQ (341200N,
1071100E) has a temperate continental monsoon
climate with a mean annual rainfall of 470mm.
Shengli (371280N, 1181290E) has a warm temperate
continental semihumid monsoon climate with a
mean annual rainfall of 550mm. Jianghan (301210N,
1141200E) has a subtropical humid monsoon climate
with a mean annual rainfall of 1159.8mm. Con-
taminated soils were collected adjacent to crude oil
pumping wells in which contamination occurred
several years ago. Uncontaminated soils were col-
lected from undisturbed pristine soils. Sampling
sites in the same regions were located in an area
of 1 km2. All were collected from surface soil
(0–10 cm). Several soil cores were composited for
microbial and chemical analysis (200 g in total).
Soils were sealed in sterile sampling bags and
transported to the lab on ice. The following physical
and chemical parameters of soil were measured
according to the recommended soil testing proce-
dures (Lu, 1999): pH, water content, total nitrogen
(nitrogen in all organic and inorganic forms),
available nitrogen (N, NO3

�–N, NO2
�–N and

NH4
þ -N), total phosphorus (phosphorus in all

organic and inorganic forms), available phosphorus
(P, PO4

3�–P), available micronutrients (Cu, Zn, Fe,
Mn), organic matter, soluble salts and soil texture.
The crude oil concentration in the contaminated soil
was determined using an Ultrasonic-Soxhlet extrac-
tion gravimetric method (Huesemann, 1995).
Uncontaminated soils were also extracted with the
Ultrasonic-Soxhlet to confirm that they were ‘non-
contaminated’. The four components (aliphatic
hydrocarbons, aromatic hydrocarbons, polar frac-
tion with heteroatoms of nitrogen, sulfur and oxygen
(NSO fraction) and asphaltenes) of crude oil were
separated using silica gel (0.15–0.18mm) and
alumina (0.07–0.15mm) column chromatography
(Liang et al., 2009b). Aliquots of soil samples were
stored at �80 1C for molecular analysis.

Soil microbial DNA extraction
Microbial genomic DNA was extracted from 5g of
well-mixed soil for each sample by combining freeze-
grinding and sodium dodecyl sulfate for cell lysis as
previously described (Zhou et al., 1996). Crude DNA
was purified by agarose gel electrophoresis, followed
by phenol–chloroform–butanol extraction. The pur-
ified DNA was quantified with agarose gel electro-
phoresis, an ND-1000 spectrophotometer (Nanodrop
Inc., Wilmington, DE, USA) and Quant-It PicoGreen
kit (Invitrogen, Carlsbad, CA, USA).

GeoChip hybridization
A detailed microbial functional diversity study was
conducted with GeoChip. A pair of contaminated
and uncontaminated soils from each field was
selected for GeoChip analysis, with three replicates
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for each sample. An aliquot of 100ng DNA was
amplified using the TempliPhi kit (Amersham
Biosciences, Piscataway, NJ, USA) in a modified
buffer containing single-strand binding protein
(200 ng ml�1) and spermidine (0.04mM) to increase
the sensitivity and representation of amplification,
and incubated at 30 1C for 3h (Wu et al., 2006). All of
the amplified DNA was labeled, purified and
resuspended in 130 ml hybridization solution as
described previously (Wu et al., 2006). The fluores-
cently labeled DNA was hybridized with GeoChip
2.0 on a HS4800 Hybridization Station (Tecan US,
Durham, NC, USA) in triplicate at 42 1C for 10h.
Microarrays were scanned by a ScanArray
5000 Microarray Analysis System (PerkinElmer,

Wellesley, MA, USA) at 95% laser power and 68%
photomultiplier tube gain.

Data analysis
For GeoChip analysis, signal intensities of each spot
were measured with ImaGene 6.0 (Biodiscovery Inc.,
El Segundo, CA, USA). Only the spots automatically
scored as positive in the output of raw data were
used for further data analysis. The signal intensities
used for final analysis were background subtracted.
Intensities of three replicates were normalized with
mean signal intensities as described previously (Wu
et al., 2008). Spots with signal intensity-background
intensity/background standard deviation o2.0 ) and
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Figure 1 (a) Map of the five sampling oil-contaminated fields located in different geoclimate regions across China: Daqing (DQ) in
northeast, Yumen (YM) and Changqing (CQ) in northwest, Shengli (SL) in north and Jianghan (JH) in central China; and (b) hierarchical
clustering analysis of microbial communities in the five oil-contaminated fields based on all functional genes. U: uncontaminated; C:
contaminated.
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outliers of replicates (42 standard deviation) were
removed. A gene was considered present when a
positive hybridization signal was obtained from
X51% of spots across all replicates. A matrix was
generated from the normalized pixel intensities of
all protein coding genes.

Hierarchical cluster analysis of whole functional
genes was performed using the unweighted pairwise
average-linkage clustering algorithm (Eisen et al.,
1998) with R, using vegan and stats packages.
Detailed hierarchical clustering of functional genes
was performed using CLUSTER (http://rana.stanford.
edu), and visualized in TREEVIEW (http://rana.
stanford.edu/).

The contributions of soil geochemical parameters
(E), geographic location (L) and oil contamination (O)
to microbial community variations were further eval-
uated with variance partitioning analysis using (par-
tial) canonical correspondence analysis by CANOCO
for Windows Version 4.5 (ter Braak and Smilauer,
1998, Plant Research International, Wageningen, The
Netherlands). All soil geochemical data, except pH
values, were log2 (xþ 1) transformed for standardiza-
tion. The difference in soil texture was not considered,
as clay, silt and sand compositions were only available
for some samples. Spatial variables measured as
latitude–longitude coordinates were converted into
projected coordinates and represented by a cubic
trend-surface polynomial to capture broad-scale spatial
trends (Legendre and Legendre, 1998). A forward
selection procedure was performed on all environ-
mental and spatial variables to select the most
parsimonious subset of variables for further variance
partitioning analysis. The significance test was carried
out by Monte Carlo permutation (999 times).

Results

Geochemical data variation
The oil content and other geochemical parameters of
the soil samples are shown in Supplementary
Table S1. Contamination level varied substantially
among these sites investigated, ranging from 2 to
238mg g�1. The four components (aliphatic hydro-
carbons, aromatic hydrocarbons, polar fractions
with heteroatoms of nitrogen, sulfur and oxygen

(NSO fraction) and asphaltenes) in crude oil
extracted from soils were analyzed (Supplementary
Table S2). Generally, aliphatic and aromatic hydro-
carbons were the main components of oil (450%).
The concentration of oil components varied sub-
stantially among the fields. For example, soils from
DQ had a relatively high abundance of aliphatic
hydrocarbons (450%) and a relatively low abun-
dance of NSO fraction and alsphaltenes, whereas
soils from YM and CQ had a relatively high
abundance of alsphaltenes (18–27%). Compared
with the concentrations of oil components from
oil-pumping wells (Supplementary Table S3), there
was a dramatic decrease of aliphatic hydrocarbons
in soils, which was due to both volatilization of low
molecular weight compounds and biodegradation
by indigenous microbes (Liang et al., 2009b). Other
soil parameters such as nutrient level (nitrogen,
phosphorous), water content and soil texture also
varied considerably among the five fields. Among
the soil geochemical variables, significant correla-
tion was observed between water content and oil
(r¼�0.58, Po0.01), which might be due to increase
in water evaporation caused by higher soil tempera-
ture with oil contamination. Detrended correspon-
dence analysis was performed on all geochemical
data, including oil content (Supplementary Figure
S1). The samples from YM and CQ, both located in
northwest China, grouped separately, whereas other
samples were not obviously clustered together.

Overall microbial functional patterns
The microbial functional diversities of both con-
taminated and uncontaminated soils from each field
were analyzed with GeoChip 2.0. A total of 1814
functional genes were detected. Overall, the gene
numbers showed considerable differences among
sites and between contaminated and uncontami-
nated soils (Table 1). For example, the gene numbers
were higher in CQ and lower in Jianghan and DQ.
Within each site, gene numbers decreased in most
contaminated soils (Po0.05). Furthermore, the over-
all microbial functional diversity was significantly
decreased with contaminants based on both the
Shannon–Weaver index (H) and Simpson’s diversity
index (1/D) (Po0.05). However, the evenness of

Table 1 Diversity indices of all functional genes in soil samples

DQ-U DQ-C YM-U YM-C CQ-U CQ-C SL-U SL-C JH-U JH-C

Richnessa 177 145 349 380 1076 541 558 325 196 151
Hb 4.70 4.43 5.55 5.54 6.56 5.88 5.95 5.45 4.75 4.59
1/Dc 69.2 49.9 184.6 167.1 484.9 227.0 270.6 167.0 71.1 58.5
Evennessd 0.91 0.89 0.95 0.93 0.94 0.93 0.94 0.94 0.90 0.91

DQ, Daqing; YM, Yumen; CQ, Changqing; SL, Shengli; JH, Jianghan; U, uncontaminated; C, contaminated.
aDetected gene number.
bShannon–Weiner index, higher number represents higher diversity.
cReciprocal of Simpson’s index, higher number represents higher diversity.
dEvenness index.
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all samples did not show obvious differences and all
were close to 1, indicating an even distribution of
soil microbial communities.

Hierarchical clustering analysis was performed on
all functional genes to examine overall patterns of
variation among the soil samples (Figure 1b). Inter-
estingly, cluster results showed that samples
grouped by geographic locations, indicating distinct
microbial communities in the five fields

Changes in microbial functional genes
Identifying microbial functional genes in the environ-
ment is important to establish the linkage of commu-
nity structure to functions. Microbial functional genes
detected for major biogeochemical/metabolic pro-
cesses among the five fields are listed in Supplemen-
tary Table S4. Functional genes involved in organic
contaminant degradation were most abundant in all
samples. However, there was little difference in the
proportion of contaminant degradation genes detected
in contaminated versus uncontaminated soils,
although the overall diversity of functional genes in
contaminated soils was lower than that in unconta-
minated soils. Owing to their potential importance
in bioremediation of oil-contaminated fields, we
primarily focused on the organic contaminant degra-
dation genes below. Genes involved in other processes
were described only briefly.

Organic contaminant degradation genes. Biode-
gradation of hydrocarbons is the most important
process for the removal of oil contaminants from the
environment (Kanaly and Harayama, 2000; Van
Hamme et al., 2003). Microbial functional genes
may represent good indicators for the biodegrada-
tion potential of microbial communities. In total,
618 genes from 73 gene families involved in organic
contaminant degradation showed positive hybridi-
zation signals. Hierarchical clustering analysis was
performed on all degradation genes (Figure 2). All
the samples with contamination grouped together,
indicating that the microbial communities might
present similar functional pattern in organic con-
taminant degradation under oil contaminant stress.

Aliphatic hydrocarbons degradation genes. Ali-
phatic hydrocarbons were major components of oil
contaminants (B50%) (Supplementary Table S2).
The most common aerobic degradation pathway of
alkanes is terminal oxidation, which is initiated by
alkane monooxygenase-catalyzed oxidation of the
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Figure 2 Clustering analysis of functional genes involved in
organic contaminant degradation. The protein id number and its
derived organism for each gene are presented. Heat maps were
generated in CLUSTER and visualized using TREEVIEW. Red
indicates signal intensities above background, whereas black
indicates signal intensities below background. Brighter red
coloring indicates higher signal intensities. DQ-Daqing, YM-
Yumen, CQ-Changqing, SL-Shengli, JH-Jianghan. U: uncontami-
nated; C: contaminated.
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terminal methyl group of alkane to 1-alkanol. Genes
encoding alkane monooxygenase in the soil samples
from the five fields are listed in Supplementary Table
S5. Alkane-1-monooxygenase genes derived from
Rhodococcus erythropolis and Rhodococcus sp. Q15
(14331004, 15420776) were detected across all sam-
ples. Rhodococcus strains have been reported to
degrade a broad range of aliphatics, C6–C36 n-alkanes
and branched alkanes (Whyte et al., 1998; van Beilen
et al., 2002). The alkane hydroxylase gene (13750769)
from unidentified nocardia, rhodococci and myco-
bacteria (CNM-group) bacterium HXN1000 and alkane
1-monooxygenase (10185046) from Burkholderia
cepacia were also detected in most samples.
B. cepacia has been reported to degrade C12–C30

n-alkanes (Yuste et al., 2000). Further work is needed
to study the expression of alkane degradation genes of
in situ microbial communities.

Aromatics degradation genes. Aromatic hydro-
carbons are also major components of crude oil
contaminants, and most polycyclic aromatic hydro-
carbons (PAHs) have high carcinogenic and toxico-
logical properties. In total, 161 genes involved in
aromatic hydrocarbon degradation showed positive
hybridization signal intensity. Seven genes encod-
ing benzene dioxygenase were detected. The
dominant genes were benzene 1,2-dioxygenase,
ferredoxin protein gene (21232202) derived from
Xanthomonas campestris pv. campestris str. ATCC
33913 and benzene 1,2-dioxygenase system ferre-
doxin-NAD(þ ) reductase component gene (115088)
derived from Pseudomonas putida. Genes involved
in toluene aerobic and anaerobic degradation and
xylene degradation were detected, especially in
contaminated soils, with dominant genes derived
from Pseudomonas sp. and Thauera aromatica. A
total of 24 genes involved in biphenyl degradation
were detected, with dominant genes derived from
Rhodococcus sp., Comamonas testosteroni and
Pseudomonas sp.

A previous study indicated that PAHs with 2–5
rings and their alkylated derivatives were detected
in oil-contaminated fields (Liang et al., 2009b).
Genes involved in the degradation of PAHs such as
naphthalene, phenanthrene and pyrene were also
studied (Supplementary Tables S6–S8). For
naphthalene catabolism, genes encoding the
naphthalene dioxygenase Fe–S protein small sub-
unit derived from Pseudomonas sp. ND6 (38638603)
and the naphthalene degradation regulator protein
derived from Rhodococcus sp. (37683584) were
dominant across all samples. Other genes encoding
1,2-dihydroxybenzylpyruvate aldolase (10956960),
naphthalene catabolism enzyme (150231) and
2-hydroxychromene-2-carboxylate isomerase pro-
tein (17544992) were also detected in most samples.
For phenanthrene catabolism, the genes encoding
1-hydroxy-2-naphthoate transporter, derived from
Nocardioides sp. KP7 (6093708), and LysR-type
transcriptional regulator PhnS, derived from
Burkholderia sp. RP007 (3820514), were detected

in high abundance. For pyrene catabolism, genes
encoding PAH ring-hydroxylating dioxygenase,
large subunit two derived from Mycobacterium
sp. 6PY1 (27657409), putative ring-hydroxylating
dioxygenase large subunit derived from Myco-
bacterium sp. S65 (33333869) and catalase-per-
oxidase protein KatG derived from Burkholderia
pseudomallei (22711993) were dominant.

Catechol is a key dihydroxylated intermediate in
PAH catabolic pathways. The ortho- and meta-
cleavage pathways generate the tricarboxylic acid
cycle intermediated from catechol. The dioxygenase
genes involved in catechol degradation were de-
tected in all samples, with considerable variations
in the number of genes from 4 to 55 (Supplementary
Figure S2). Generally, 10–55 genes involved in
catechol degradation were observed in uncontami-
nated soils and 4–26 genes in contaminated soils.
The impact of oil contaminants on genes involved in
catechol degradation varied substantially. Of all
catechol degradation-related genes, four genes (tdnJ
from Pseudomonas sp., orf8 from Rhodococcus sp.,
catechol-meta derivative gene from Mesorhizobium
sp. and catechol-ortho derivative gene from Nostoc
sp.) were positively correlated with oil concentra-
tion (r¼ 0.55–0.78, Pp0.05). However, two genes
(catB2 from Frateuria sp. and ORF291 from Rubri-
vivax sp.) were negatively correlated with oil
concentration (r¼�0.67 to �0.53, Pp0.05). The
most dominant genes (3402316, 3402328) both
encoded catechol 2,3-dioxygenase from unidentified
bacteria that were isolated from a mixed culture of
crude oil-degrading bacteria and a mixed culture of
phenol-degrading bacteria.

Carbon-cycling genes. Cellulose, lignin and chitin
are the most abundant carbon sources derived from
plant tissues or organisms in soil ecosystems.
Microbial functional genes related to cellulase,
laccase and chitinase were present in high abun-
dance as expected (Supplementary Figures S3A–C).
Of these, two genes (cellulase from Pectobacterium
sp. and laccase from Piloderma sp.) were detected
across all samples. Several carbon degradation genes
were significantly affected by oil contamination.
Three genes (two laccase genes from Polyporus sp.
and Trametes sp. and a chitinase gene from an
environmental isolate) were negatively correlated
with oil concentration (r¼�0.73–0.62, Pp0.05). In
contrast, three genes (cellulase from Rhodospirillum
sp. and Fusarium sp. and polygalacturonase from
Phytophthora sp.) were positively correlated with
nitrogen available in soil (r¼ 0.55 to �0.64,
Pp0.05). Most of the rbcL genes involved in carbon
fixation were from uncultured bacteria (Supplemen-
tary Figure S3D) and were negatively correlated with
oil concentrations (r¼�0.68 to �0.78, Pp0.05).

Nitrogen-cycling genes. Detailed changes of micro-
bial functional genes involved in nitrogen cycling
such as nifH, amo, urease, nar and nir are shown in
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Supplementary Figure S4A–E. Most of the nifH, nar
and nir genes observed were from environmental
clones rather than from pure cultures. Of these
nitrogen-cycling genes, two urease genes from
Deinococcus sp. and Mesorhizobium sp. were
abundant and present in all samples. Correlation
analysis indicated that several genes were signifi-
cantly negatively correlated with oil concentration:
urease from Wautersia, nosZ from Paracoccus sp.
and nifH, narG, nirS and norB from uncultured
bacteria (r¼�0.71 to �0.55, Pp0.05).

As nitrogen could be a major limiting factor in
bioremediation of oil-contaminated soils (Braddock
et al., 1997; Gogoi et al., 2003; Liang et al., 2009b),
the relationship between nitrogen-cycling genes and
nitrogen concentrations in soils was further exami-
ned. Several genes such as urease from Mycobacter-
ium sp., Streptomyces sp., Mesorhizobium sp.,
Bacillus sp., Brucella sp. and Pseudomonas sp.,
and nifH, nar and nir from uncultured bacteria were
positively correlated with soil nitrogen concentra-
tions (r¼ 0.65–0.77, Pp0.05). These results sug-
gested that nitrogen-cycling activities could be
negatively affected by oil contamination but posi-
tively affected by soil nitrogen concentrations.

Relationship between microbial functional diversity
and environmental variables
Canonical correspondence analysis was performed
to discern possible linkages between micro-
bial functional structure and soil geochemical
parameters (Figure 3). Only significant geochemical

parameters were included in the canonical
correspondence analysis biplot (oil, pH, N, P, Mn,
Fe, Zn, salt and organic matter, based on a forward
selection procedure and variance inflation factors
with 999 Monte Carlo permutations). Samples were
grouped together on the basis of their geographic
locations, which was consistent with the clustering
result of all functional genes. The first axis was
positively correlated with organic matter, oil content
and Zn. The second axis was positively correlated
with salt content, pH and oil content, but negatively
correlated with N, P and Mn. On the basis of the
relationship between environmental variables and
microbial functional structure, oil content seemed to
be a major factor influencing the microbial func-
tional structure in DQ and Jianghan, which have a
long-term exploration history with the highest oil
contamination level. In addition, N and P seemed to
be major factors influencing the microbial functional
structure in YM and CQ in northwest China,
whereas oil content, salt and pH could have key
roles in shaping microbial functional structure in
Shengli in north China, which has high oil con-
tamination levels and severe soil saline alkalization.

Variance partitioning analysis was further per-
formed to quantify the contributions of geographic
location (L), soil environmental parameters (E) and
oil contamination (O) to the microbial community
variation. We considered oil contamination as an
independent factor, as it was due to human activity.
The total variation was partitioned into the pure
effects of L, E and O (when the effects of all other
factors were removed), interactions between any
two components (L�E, E�O and O�L), common
interactions of all three components (L�E�O) and
the unexplained portion (Figure 4a). On the basis of
GeoChip data, a total of 58.7% of the variation was
significantly explained (P¼ 0.006) by these three
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triangle presented the variation explained by each factor alone.
The sides of the triangles presented interactions of any two factors
and the middle of the triangles represented interactions of all
three factors.
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Figure 3 Canonical correspondence analysis (CCA) of GeoChip
hybridization signal intensities and soil geochemical data that
were significantly related to microbial variations: oil concentra-
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components (Figure 4b). Oil contamination,
geographic location and soil environmental para-
meters were able to independently explain 10.3,
33.5 and 12.6% of the total variations observed,
respectively. Interactions among the three major
components seemed to have less influence than did
individual components, and were only observed
between soil environmental parameters and geo-
graphic location (0.6%) and between oil contamina-
tion and geographic location (1.8%). More than 40%
of the community variation based on GeoChip data
could not be explained by these three components.

Discussion

Analyzing microbial functional genes encoding key
enzymes involved in major biogeochemical processes
and contaminant degradation is important to link
microbial community structure to their potential
ecological functions (Torsvik and Ovreas, 2002).
However, characterization and quantification of
microbial community functional structure are great
challenges, especially for those in oil-contaminated
fields. On one hand, oil contaminants could be toxic
to many microbial populations, and thus reduce
microbial diversity, on the other hand, the vast range
of carbon substrates (alkanes, aromatics, PAHs,
branched hydrocarbons and heterocyclics) and sub-
sequent metabolites (carboxylic acids, n-aldehydes
and so on) present in oil-contaminated soils could
facilitate the development of rather complex micro-
bial communities (Van Hamme et al., 2003). It is
extremely difficult to detect microbial metabolic
genes involved in contaminant degradation, as well
as other important geochemical cycles, in a rapid
and comprehensive way using conventional
molecular ecology approaches. Microarray-based
genomic technology provides a powerful tool for
monitoring various microbial functional genes (Leigh
et al., 2007; Yergeau et al., 2009; Liang et al., 2009a).

In this study, microbial functional gene diversity
in five oil-contaminated fields located in different
geographic regions of China was analyzed using
GeoChip. The abundance of several functional genes
involved in organic contaminant degradation, such
as catechol dioxygenase genes and bph, was found
to increase with oil concentration. The biodegrada-
tion of PAHs by microorganisms through a complex
enzymatic process was well documented (Kanaly
and Harayama, 2000). Langworthy et al. (1998)
found that high PAH concentrations increased the
frequencies of nahA and alkB genes. Gomes et al.
(2005) also reported a positive correlation between
naphthalene contamination and abundance of
phnAc genes. The increase of these functional genes
might be due to the natural selection of organisms
capable of utilizing hydrocarbon compounds. The
dominant detected genes involved in high molecu-
lar weight PAH degradation, such as pyrene dioxy-
genase, were mainly derived from Mycobacterium

sp., which has been shown to use PAHs as carbon
and energy sources. For example, a series of
enzymes from some Mycobacterium cultures were
shown to be responsible for pyrene catabolism
(Heitkamp et al., 1988). The existence of metabolic
genes indicates a potential metabolic capacity of
indigenous microbial communities in oil-contami-
nated fields. Further work would be needed to
connect microbial functional gene expression with
contaminants degradation in situ.

Many genes involved in carbon and nitrogen
cycling had negative correlations with oil contami-
nant concentrations. This is consistent with the
report that oil contamination had a negative influ-
ence on soil urease and dehydrogenase activity
(Megharaj et al., 2000). Lindstrom et al. (1999) also
found that N mineralization was lower in the oiled
soils. The general consistency of GeoChip results
with other studies further supports the robustness of
GeoChip analysis as demonstrated by many of our
previous studies (Rhee et al., 2004; Tiquia et al.,
2004; Wu et al., 2001, 2006; He et al., 2007; Wang
et al., 2009).

Understanding the factors that influence micro-
bial community structure is an important goal in
microbial ecology. Our results indicate that oil
contamination had a significant impact on soil
microbial functional communities in oil-contami-
nated fields. Although the samples were from
different geographic locations, the microbial organic
contaminant degradation genes presented similar
pattern under oil contaminant stress. This is
expected because of natural selection. Aislabie
et al. (2004) reported an increase in the numbers of
hydrocarbon-degrading bacteria, typically Rhodo-
coccus, Sphingomonas and Pseudomonas, after a
hydrocarbon spill on Antarctic soils, although over-
all microbial diversity declined. Saul et al. (2005)
also found that microbial communities in oil-
contaminated soils were dominated by Proteobacteria,
specifically, by members of the genera Pseudomo-
nas, Sphingomonas and Variovorax, some of which
degrade hydrocarbons.

Variation partitioning analysis in this study
showed that geographic location contributed the
most (33.5%) to microbial functional gene variation,
which is in accordance with the hierarchical
clustering of overall microbial functional genes,
indicating a significant impact of local environ-
mental conditions on the composition and struc-
tures of microbial communities. Although this is an
interesting finding, the sampling strategy and the
number of samples analyzed in this study limit our
ability to fully address this question. Studies using a
more extensive sampling effort are currently under-
way to examine the microbial distribution patterns
in oil-contaminated sites across different geographic
locations, with many replicated samples from each
location.

A large part (41.3%) of the variations of microbial
community structure could not be explained by any
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of the three components (geographic location, soil
geochemical variables and oil contamination). This
is also consistent with several other recent studies.
Zhou et al. (2008) showed that more than 50% of
variations in a forest soil community could not be
explained by both environmental variables and
geographic distance. Ramette and Tiedje (2007b)
showed that 34–80% of microbial variations could
not be explained by measured variables in agricul-
tural soils. All the above studies indicate that
considerable amounts of variations could not be
explained by environmental variables measured.
This could be because of unmeasured environmen-
tal variables. For instance, it has been reported that
the types of oil contaminants and age of site
contamination could influence the microbial genetic
diversity (Bhattacharya et al., 2003). The composi-
tion and structure of hydrocarbons in oil
contaminants are highly variable in different
oil-contaminated fields, which could affect the
microbial functional gene composition. Other un-
measured factors such as vegetation and plant
species and soil texture may also influence micro-
bial diversity (He et al., 2006; Rooney-Varga et al.,
2007; Ramette and Tiedje, 2007b). Moreover, some
other environmental factors, such as soil and water
content, only represent the conditions when sam-
pling occurred, which may have been significantly
different during other periods. Moreover, sampling
effects and ecologically neutral processes of diversi-
fication may contribute to the unexplained portion
of microbial community variation (Ramette and
Tiedje, 2007a; Zhou et al., 2008).

One of the central goals of investigating micro-
organisms in oil-contaminated fields is for environ-
mental cleanup. One practical application of
studying microbial functional diversity and the
related environmental variables in oil-contaminated
fields is for assisting in situ bioremediation. High
abundance of genes involved in organic contami-
nant degradation existed in all of the oil-contami-
nated sites (Supplementary Table S4), indicating the
existence of indigenous microorganisms for oil
contaminant degradation. However, the degradation
process might be influenced by low nutrients (Atlas,
1981; Oh et al., 2001). Specifically, nitrogen could
be limited because of the decrease in nitrogen-
cycling genes with oil concentration, which may
indicate a decrease in nitrogen-cycling activity.
Adjustment of the carbon/nitrogen ratio by adding
nitrogen may be important for in situ bioremediation
of oil-contaminated fields. The influence of several
other environmental factors on hydrocarbon bio-
degradation has been studied. Ward and Brock (1978)
showed that the rates of metabolism of hydrocarbon
compounds decreased as salinity increased. Shiaris
(1989) reported a generally negative correlation
between salinity and rates of mineralization of
phenanthrene and naphthalene. In this study, we
also found a significant influence of salt in microbial
functional diversity, especially in fields with severe

soil saline alkalization. These findings suggest the
significant challenges that we may face when in situ
bioremediation is performed on oil-contaminated
sites.

The existence of key genes involved in hydro-
carbon degradation across all oil-contaminated
fields implies that stimulating indigenous micro-
organisms could be a valid option for remediating
oil-contaminated sites. However, the microbial
community structures were substantially different
at different sites and within sites; hence, biostimu-
lation of indigenous microorganisms could be a
complicated process, and a variety of optimized
strategies to stimulate and maintain the desired
populations may need to be considered to achieve
bioremediation goals. Alternatively, some key
populations involved in degrading the desired
hydrocarbon compounds may not be present and/
or may be difficult to stimulate to the desired level.
In this case, bioaugmentation through introducing
desired microorganisms could be an option. How-
ever, on the basis of spatial isolation hypothesis
(Zhou et al., 2002; Treves et al., 2003), although any
introduced strain may be able to successfully
colonize a highly diverse community, it would be
difficult to achieve dominance (Zhou et al., 2002).
Understanding microbial functional potential, the
mechanisms shaping microbial community func-
tional structure and spatial distribution patterns
will help design appropriate strategies for successful
in situ bioremediation through biostimulation
and/or bioaugmentation.
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