Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tolerance of activated pathogenic CD4+ T cells by transcriptional targeting of dendritic cells

Abstract

We have recently shown that targeted expression of myelin oligodendrocyte glycoprotein (MOG) to dendritic cells with self-inactivating-lentivirus vectors induces antigen-specific tolerance in naive antigen-specific CD4+ T cells and protects mice from experimental autoimmune encephalomyelitis (EAE). In the present study, we demonstrate that this approach also induces tolerance of activated antigen-specific CD4+ T cells and completely protects mice from passive EAE induction. Tolerance induction did not correlate with the depletion of the preactivated antigen-specific CD4+ T cells. However, upon isolation and in vitro re-stimulation at day 6 after adoptive transfer the MOG-specific CD4+ T cells from the non-tolerized mice produced large amounts of inflammatory cytokines, whereas those from tolerized mice did not. This unresponsiveness correlated with the upregulation of regulatory molecules associated with anergy and regulatory T cells (Tregs). The in vivo depletion of Tregs resulted in EAE susceptibility of the tolerized animals, suggesting that these cells have indeed a role in tolerance induction/maintenace.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Briggs FBS, Goldstein BA, McCauley JL, Zuvich RL, De Jager PL, Rioux JD et al. Variation within DNA repair pathway genes and risk of multiple sclerosis. Am J Epidemiol 2010; 172: 217–224.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lin X, Deng F, Mo X, Wu L, Lei S . Functional relevance for multiple sclerosis-associated genetic variants. Immunogenetics 2014; 67: 7–14.

    Article  PubMed  Google Scholar 

  3. Comabella M, Craig DW, Camiña-Tato M, Morcillo C, Lopez C, Navarro A et al. Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500 000 single nucleotide polymorphisms. PLoS One 2008; 3: e3490.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Patsopoulos NA, de Bakker PIW . Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 2011; 70: 897–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haas J, Korporal M, Schwarz A, Balint B, Wildemann B . The interleukin-7 receptor α chain contributes to altered homeostasis of regulatory T cells in multiple sclerosis. Eur J Immunol 2011; 41: 845–853.

    Article  CAS  PubMed  Google Scholar 

  6. Alcina A, Fedetz M, Ndagire D, Fernández O, Leyva L, Guerrero M et al. IL2RA/CD25 gene polymorphisms: uneven association with multiple sclerosis (MS) and type 1 diabetes (T1D). PLoS One 2009; 4: e4137.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zuvich RL, McCauley JL, Oksenberg JR, Sawcer SJ, de Jager PL, Aubin C et al. Genetic variation in the IL7RA/IL7 pathway increases multiple sclerosis susceptibility. Hum Genet 2010; 127: 525–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lunemann JD, Jelcic I, Roberts S, Lutterotti A, Tackenberg B, Martin R et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN- and IL-2. J Exp Med 2008; 205: 1763–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007; 204: 2899–2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler 2014; 20: 1541–1544.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW . Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 2008; 181: 7090–7099.

    Article  CAS  PubMed  Google Scholar 

  12. Ramagopalan SV, Lee JD, Yee IM, Guimond C, Traboulsee AL, Ebers GC et al. Association of smoking with risk of multiple sclerosis: a population-based study. J Neurol 2013; 260: 1778–1781.

    Article  PubMed  Google Scholar 

  13. Lehmann-Horn K, Kronsbein HC, Weber MS . Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges. Ther Adv Neurol Disord 2013; 6: 161–173.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amedei A, Prisco D, D’Elios M . Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. IJMS 2012; 13: 13438–13460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goverman JM . Immune tolerance in multiple sclerosis. Immunol Rev 2011; 241: 228–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung H . Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2006; 2: 201–211.

    Article  CAS  PubMed  Google Scholar 

  17. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11: 328–334.

    Article  CAS  PubMed  Google Scholar 

  18. Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011; 12: 560–567.

    Article  CAS  PubMed  Google Scholar 

  19. Bouneaud C, Kourilsky P, Bousso P . Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 2000; 13: 829–840.

    Article  CAS  PubMed  Google Scholar 

  20. Bielekova B, Sung M, Kadom N, Simon R, McFarland H, Martin R . Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol 2004; 172: 3893–3904.

    Article  CAS  PubMed  Google Scholar 

  21. Walker LS, Abbas AK . The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002; 2: 11–19.

    Article  CAS  PubMed  Google Scholar 

  22. Lutz MB, Kukutsch NA, Menges M, Rössner S, Schuler G . Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol 2000; 30: 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  23. Macián F, Im S, García-Cózar FJ, Rao A . T-cell anergy. Curr Opin Immunol 2004; 16: 209–216.

    Article  PubMed  Google Scholar 

  24. Yang J, Xu L, Huang Y, van der Meide PH, Link H, Xiao B . Adherent dendritic cells expressing high levels of interleukin-10 and low levels of interleukin-12 induce antigen-specific tolerance to experimental autoimmune encephalomyelitis. Immunology 2000; 101: 397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 2004; 101: 10691–10696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salama AD, Chitnis T, Imitola J, Ansari MJI, Akiba H, Tushima F et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003; 198: 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou X, Kong N, Zou H, Brand D, Li X, Liu Z et al. Therapeutic potential of TGF-β-induced CD4+Foxp3+regulatory T cells in autoimmune diseases. Autoimmunity 2011; 44: 43–50.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Koldzic DN, Izikson L., Reddy J., Nazareno RF, Sakaguchi S et al. IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 2004; 16: 249–256.

    Article  CAS  PubMed  Google Scholar 

  29. Walker LSK, Sansom DM . The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 2011; 11: 852–863.

    Article  CAS  PubMed  Google Scholar 

  30. de Andrade Pereira B, Fraefel C, Hilbe M, Ackermann M, Dresch C . Transcriptional targeting of DCs with lentiviral vectors induces antigen-specific tolerance in a mouse model of multiple sclerosis. Gene Therapy 2012; 20: 556–566.

    Article  PubMed  Google Scholar 

  31. Dresch C, Ackermann M, Vogt B, de Andrade Pereira B, Shortman K, Fraefel C . Thymic but not splenic CD8+ DCs can efficiently cross-prime T cells in the absence of licensing factors. Eur J Immunol 2011; 41: 2544–2555.

    Article  CAS  PubMed  Google Scholar 

  32. Dresch C, Edelmann SL, Marconi P, Brocker T . Lentiviral-mediated transcriptional targeting of dendritic cells for induction of T cell tolerance in vivo. J Immunol 2008; 181: 4495–4506.

    CAS  PubMed  Google Scholar 

  33. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10: 1969–1980.

    Article  CAS  PubMed  Google Scholar 

  34. Carrithers MD . Update on disease-modifying treatments for multiple sclerosis. Clin Ther 2014; 36: 1938–1945.

    Article  CAS  PubMed  Google Scholar 

  35. Castro-Borrero W, Graves D, Frohman TC, Flores AB, Hardeman P, Logan D et al. Current and emerging therapies in multiple sclerosis: a systematic review. Ther Adv Neurol Disord 2012; 5: 205–220.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Turley DM, Miller SD . Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 2007; 178: 2212–2220.

    Article  CAS  PubMed  Google Scholar 

  37. Lutterotti A, Yousef S, Sputtek A, Sturner KH, Stellmann J, Breiden P et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med 2013; 5: 188ra75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou F, Lauretti E, Di Meco A, Ciric B, Gonnella P, Zhang G et al. Intravenous transfer of apoptotic cell-treated dendritic cells leads to immune tolerance by blocking Th17 cell activity. Immunobiology 2013; 218: 1069–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou F, Ciric B, Zhang G, Rostami A . Immune tolerance induced by intravenous transfer of immature dendritic cells via up-regulating numbers of suppressive IL-10+ IFN-γ+-producing CD4+ T cells. Immunol Res 2013; 56: 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012; 30: 1217–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ko H, Chung J, Nasa Z, Chan J, Siatskas C, Toh B et al. Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease. Autoimmunity 2011; 44: 177–187.

    Article  CAS  PubMed  Google Scholar 

  42. Chan J, Ban EJ, Chun KH, Wang S, Backstrom BT, Bernard CCA et al. Transplantation of bone marrow transduced to express self-antigen establishes deletional tolerance and permanently remits autoimmune disease. J Immunol 2008; 181: 7571–7580.

    Article  CAS  PubMed  Google Scholar 

  43. Nasreen M, Waldie TM, Dixon CM, Steptoe RJ . Steady-state antigen-expressing dendritic cells terminate CD4+ memory T-cell responses. Eur J Immunol 2010; 40: 2016–2025.

    Article  CAS  PubMed  Google Scholar 

  44. Kenna TJ, Waldie T, McNally A, Thomson M, Yagita H, Thomas R et al. Targeting antigen to diverse APCs inactivates memory CD8+ T cells without eliciting tissue-destructive effector function. J Immunol 2010; 184: 598–606.

    Article  CAS  PubMed  Google Scholar 

  45. McNeill A, Spittle E, Bäckström BT . Partial depletion of CD69 low -expressing natural regulatory T Cells with the anti-CD25 monoclonal antibody PC61. Scand J Immunol 2007; 65: 63–69.

    Article  CAS  PubMed  Google Scholar 

  46. Betts RJ, Ho AWS, Kemeny DM, Unutmaz D . Partial depletion of natural CD4+CD25+ regulatory T cells with anti-CD25 antibody does not alter the course of acute influenza A virus infection. PLoS One 2011; 6: e27849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martinez NE, Karlsson F, Sato F, Kawai E, Omura S, Minagar A et al. Protective and detrimental roles for regulatory T cells in a viral model for multiple sclerosis. Brain Pathol 2014; 24: 436–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu B et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 2012; 9: 112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kohm AP, Carpentier PA, Anger HA, Miller SD . Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002; 169: 4712–4716.

    Article  CAS  PubMed  Google Scholar 

  50. Tonkin DR, He J, Barbour G, Haskins K . Regulatory T cells prevent transfer of type 1 diabetes in NOD mice only when their antigen is present in vivo. J Immunol 2008; 181: 4516–4522.

    Article  CAS  PubMed  Google Scholar 

  51. Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A . The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis 2012; 2012: 805–875.

    Article  Google Scholar 

  52. Hagymasi AT, Slaiby AM, Mihalyo MA, Qui HZ, Zammit DJ, Lefrancois L et al. Steady state dendritic cells present parenchymal self-antigen and contribute to, but are not essential for, tolerization of naive and Th1 effector CD4 cells. J Immunol 2007; 179: 1524–1531.

    Article  CAS  PubMed  Google Scholar 

  53. Tyler KL . Human herpesvirus 6 and multiple sclerosis: the continuing conundrum. J Infect Dis 2003; 187: 1360–1364.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Judith Robotka and Carla Rohrer-Bley for technical support and Dana Salathe for assistance with mice. This work was supported by funds from the Swiss Multiple Sclerosis Society and the University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Fraefel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade Pereira, B., Ackermann, M., Chaudhary, S. et al. Tolerance of activated pathogenic CD4+ T cells by transcriptional targeting of dendritic cells. Gene Ther 22, 382–390 (2015). https://doi.org/10.1038/gt.2015.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.6

This article is cited by

Search

Quick links