Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model

Abstract

In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon in vitro upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNβ. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant in vivo, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Russell SJ, Peng KW, Bell JC . Oncolytic virotherapy. Nat Biotechnol 2012; 30: 658–670.

    Article  CAS  Google Scholar 

  2. Miest TS, Cattaneo R . New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 2014; 12: 23–34.

    Article  CAS  Google Scholar 

  3. Noser JA, Mael AA, Sakuma R, Ohmine S, Marcato P, Lee PW et al. The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol Ther 2007; 15: 1531–1536.

    Article  CAS  Google Scholar 

  4. Shmulevitz M, Pan LZ, Garant K, Pan D, Lee PW . Oncogenic Ras promotes reovirus spread by suppressing IFN-beta production through negative regulation of RIG-I signaling. Cancer Res 2010; 70: 4912–4921.

    Article  CAS  Google Scholar 

  5. Saloura V, Wang LC, Fridlender ZG, Sun J, Cheng G, Kapoor V et al. Evaluation of an attenuated vesicular stomatitis virus vector expressing interferon-beta for use in malignant pleural mesothelioma: heterogeneity in interferon responsiveness defines potential efficacy. Hum Gene Ther 2010; 21: 51–64.

    Article  CAS  Google Scholar 

  6. Krishnamurthy S, Takimoto T, Scroggs RA, Portner A . Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. J Virol 2006; 80: 5145–5155.

    Article  CAS  Google Scholar 

  7. Berchtold S, Lampe J, Weiland T, Smirnow I, Schleicher S, Handgretinger R et al. Innate immune defense defines susceptibility of sarcoma cells to measles vaccine virus-based oncolysis. J Virol 2013; 87: 3484–3501.

    Article  CAS  Google Scholar 

  8. Malilas W, Koh SS, Srisuttee R, Boonying W, Cho IR, Jeong CS et al. Cancer upregulated gene 2, a novel oncogene, confers resistance to oncolytic vesicular stomatitis virus through STAT1-OASL2 signaling. Cancer Gene Ther 2013; 20: 125–132.

    Article  CAS  Google Scholar 

  9. Christian SL, Zu D, Licursi M, Komatsu Y, Pongnopparat T, Codner DA et al. Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells. PLoS One 2012; 7: e44267.

    Article  CAS  Google Scholar 

  10. Naik S, Nace R, Federspiel MJ, Barber GN, Peng KW, Russell SJ . Curative one-shot systemic virotherapy in murine myeloma. Leukemia 2012; 26: 1870–1878.

    Article  CAS  Google Scholar 

  11. Heikkila JE, Vaha-Koskela MJ, Ruotsalainen JJ, Martikainen MW, Stanford MM, McCart JA et al. Intravenously administered alphavirus vector VA7 eradicates orthotopic human glioma xenografts in nude mice. PLoS One 2010; 5: e8603.

    Article  Google Scholar 

  12. Barrett MT, Lenkiewicz E, Evers L, Holley T, Ruiz C, Bubendorf L et al. Clonal evolution and therapeutic resistance in solid tumors. Front Pharmacol 2013; 4: 2.

    Article  Google Scholar 

  13. Vaha-Koskela MJ, Kallio JP, Jansson LC, Heikkila JE, Zakhartchenko VA, Kallajoki MA et al. Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res 2006; 66: 7185–7194.

    Article  Google Scholar 

  14. Maatta AM, Liimatainen T, Wahlfors T, Wirth T, Vaha-Koskela M, Jansson L et al. Evaluation of cancer virotherapy with attenuated replicative Semliki forest virus in different rodent tumor models. Int J Cancer 2007; 121: 863–870.

    Article  CAS  Google Scholar 

  15. Maatta AM, Makinen K, Ketola A, Liimatainen T, Yongabi FN, Vaha-Koskela M et al. Replication competent Semliki Forest virus prolongs survival in experimental lung cancer. Int J Cancer 2008; 123: 1704–1711.

    Article  CAS  Google Scholar 

  16. Ketola A, Hinkkanen A, Yongabi F, Furu P, Maatta AM, Liimatainen T et al. Oncolytic Semliki forest virus vector as a novel candidate against unresectable osteosarcoma. Cancer Res 2008; 68: 8342–8350.

    Article  CAS  Google Scholar 

  17. Ruotsalainen J, Martikainen M, Niittykoski M, Huhtala T, Aaltonen T, Heikkila J et al. Interferon-beta sensitivity of tumor cells correlates with poor response to VA7 virotherapy in mouse glioma models. Mol Ther 2012; 20: 1529–1539.

    Article  CAS  Google Scholar 

  18. Vaha-Koskela MJ, Le Boeuf F, Lemay C, De Silva N, Diallo JS, Cox J et al. Resistance to two heterologous neurotropic oncolytic viruses, Semliki Forest virus and vaccinia virus, in experimental glioma. J Virol 2013; 87: 2363–2366.

    Article  CAS  Google Scholar 

  19. Wang M, Bronte V, Chen PW, Gritz L, Panicali D, Rosenberg SA et al. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. J Immunol 1995; 154: 4685–4692.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Duca KA, Lam V, Keren I, Endler EE, Letchworth GJ, Novella IS et al. Quantifying viral propagation in vitro: toward a method for characterization of complex phenotypes. Biotechnol Prog 2001; 17: 1156–1165.

    Article  CAS  Google Scholar 

  21. Ryman KD, Klimstra WB . Host responses to alphavirus infection. Immunol Rev 2008; 225: 27–45.

    Article  CAS  Google Scholar 

  22. Barry G, Breakwell L, Fragkoudis R, Attarzadeh-Yazdi G, Rodriguez-Andres J, Kohl A et al. PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response. J Gen Virol 2009; 90 (Pt 6): 1382–1391.

    Article  CAS  Google Scholar 

  23. Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR . Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS One 2012; 7: e37398.

    Article  CAS  Google Scholar 

  24. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011; 472: 481–485.

    Article  CAS  Google Scholar 

  25. Henrik Gad H, Paulous S, Belarbi E, Diancourt L, Drosten C, Kummerer BM et al. The E2-E166K substitution restores Chikungunya virus growth in OAS3 expressing cells by acting on viral entry. Virology 2012; 434: 27–37.

    Article  CAS  Google Scholar 

  26. Cho H, Proll SC, Szretter KJ, Katze MG, Gale Jr M, Diamond MS . Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat Med 2013; 19: 458–464.

    Article  CAS  Google Scholar 

  27. Moerdyk-Schauwecker M, Shah NR, Murphy AM, Hastie E, Mukherjee P, Grdzelishvili VZ . Resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus: role of type I interferon signaling. Virology 2013; 436: 221–234.

    Article  CAS  Google Scholar 

  28. Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 2007; 15: 1686–1693.

    Article  CAS  Google Scholar 

  29. Kershaw MH, Hsu C, Mondesire W, Parker LL, Wang G, Overwijk WW et al. Immunization against endogenous retroviral tumor-associated antigens. Cancer Res 2001; 61: 7920–7924.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mroz P, Szokalska A, Wu MX, Hamblin MR . Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One 2010; 5: e15194.

    Article  CAS  Google Scholar 

  31. Aabo K, Roed H, Vindelov LL, Spang-Thomsen M . A dominated and resistant subpopulation causes regrowth after response to 1,3-bis(2-chloroethyl)-1-nitrosourea treatment of a heterogeneous small cell lung cancer xenograft in nude mice. Cancer Res 1994; 54: 3295–3299.

    CAS  PubMed  Google Scholar 

  32. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  Google Scholar 

  33. Saidi RF, Williams F, Silberberg B, Mittal VK, ReMine SG, Jacobs MJ . Expression of interferon receptors in pancreatic cancer: identification of a novel prognostic factor. Surgery 2006; 139: 743–748.

    Article  Google Scholar 

  34. Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM et al. STAT1-deficient mice spontaneously develop estrogen receptor alpha-positive luminal mammary carcinomas. Breast Cancer Res 2012; 14: R16.

    Article  CAS  Google Scholar 

  35. Simpson JA, Al-Attar A, Watson NF, Scholefield JH, Ilyas M, Durrant LG . Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut 2010; 59: 926–933.

    Article  CAS  Google Scholar 

  36. Wong LH, Krauer KG, Hatzinisiriou I, Estcourt MJ, Hersey P, Tam ND et al. Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3gamma. J Biol Chem 1997; 272: 28779–28785.

    Article  CAS  Google Scholar 

  37. Grudinkin PS, Zenin VV, Kropotov AV, Dorosh VN, Nikolsky NN . EGF-induced apoptosis in A431 cells is dependent on STAT1, but not on STAT3. Eur J Cell Biol 2007; 86: 591–603.

    Article  CAS  Google Scholar 

  38. Huang PY, Guo JH, Hwang LH . Oncolytic Sindbis virus targets tumors defective in the interferon response and induces significant bystander antitumor immunity in vivo. Mol Ther 2012; 20: 298–305.

    Article  CAS  Google Scholar 

  39. Mittnacht S, Jacobsen H . Selection and characterization of interferon-sensitive cells derived from an interferon-resistant NIH 3T3 line. J Gen Virol 1987; 68 (Pt 11): 2945–2951.

    Article  CAS  Google Scholar 

  40. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009; 15: 68–74.

    Article  CAS  Google Scholar 

  41. Liu YP, Suksanpaisan L, Steele MB, Russell SJ, Peng KW . Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci Rep 2013; 3: 2375.

    Article  Google Scholar 

  42. Weichselbaum RR, Ishwaran H, Yoon T, Nuyten DS, Baker SW, Khodarev N et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci USA 2008; 105: 18490–18495.

    Article  CAS  Google Scholar 

  43. Cheon H, Stark GR . Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc Natl Acad Sci USA 2009; 106: 9373–9378.

    Article  CAS  Google Scholar 

  44. Li S, Wilkinson M, Xia X, David M, Xu L, Purkel-Sutton A et al. Induction of IFN-regulated factors and antitumoral surveillance by transfected placebo plasmid DNA. Mol Ther 2005; 11: 112–119.

    Article  Google Scholar 

  45. Rodriguez-Madoz JR, Zabala M, Alfaro M, Prieto J, Kramer MG, Smerdou C . Short-term intratumoral interleukin-12 expressed from an alphaviral vector is sufficient to induce an efficient antitumoral response against spontaneous hepatocellular carcinomas. Hum Gene Ther 2014; 25: 132–143.

    Article  CAS  Google Scholar 

  46. Vaha-Koskela MJ, Tuittila MT, Nygardas PT, Nyman JK, Ehrengruber MU, Renggli M et al. A novel neurotropic expression vector based on the avirulent A7(74) strain of Semliki Forest virus. J Neurovirol 2003; 9: 1–15.

    Article  Google Scholar 

  47. Bonnotte B, Gough M, Phan V, Ahmed A, Chong H, Martin F et al. Intradermal injection, as opposed to subcutaneous injection, enhances immunogenicity and suppresses tumorigenicity of tumor cells. Cancer Res 2003; 63: 2145–2149.

    CAS  PubMed  Google Scholar 

  48. Simmons JD, Wollish AC, Heise MT . A determinant of Sindbis virus neurovirulence enables efficient disruption of Jak/STAT signaling. J Virol 2010; 84: 11429–11439.

    Article  CAS  Google Scholar 

  49. Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 2012; 48: 28–38.

    Article  CAS  Google Scholar 

  50. Hefti HP, Frese M, Landis H, Di Paolo C, Aguzzi A, Haller O et al. Human MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections. J Virol 1999; 73: 6984–6991.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Diana Schenkwein from A.I. Virtanen Institute for Molecular Sciences for her expert advice and the staff of the lab animal centers for their professional support. MV-K was funded by the Academy of Finland (grant number 125186), Canadian Institutes of Health Research and Terry Fox Foundation, Canada. JB was supported by an Industrial Fellowship from the Canadian Institutes of Health Research and Terry Fox Foundation (TFF 122868). AH was financially supported by the Academy of Finland (grant number 137958), Emil Aaltonen Foundation, Medicinska Understödsföreningen Liv och Hälsa, the Finnish Cancer Foundations, the strategic funding for the Cancer Center of the University of Eastern Finland, DPMM graduate school, State Funding for University Hospitals (EVO) and Orion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E Hinkkanen.

Ethics declarations

Competing interests

John Bell is co-founder of Jennerex Biotherapeutics and sits on the Board of Directors. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruotsalainen, J., Kaikkonen, M., Niittykoski, M. et al. Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model. Gene Ther 22, 65–75 (2015). https://doi.org/10.1038/gt.2014.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.83

This article is cited by

Search

Quick links