Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer

Subjects

Abstract

Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical–vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parker RD, Ruutel K . A surveillance report of HIV status and high risk behaviors among rapid testing participants in Tallinn, Estonia. AIDS Behav 2011; 15: 761–766.

    Article  PubMed  Google Scholar 

  2. Hladik F, Hope TJ . HIV infection of the genital mucosa in women. Curr HIV/AIDS Rep 2009; 6: 20–28.

    Article  PubMed  Google Scholar 

  3. Carias A, McCoombe S, McRaven M, Anderson M, Galloway N, Vandergrift N et al. Defining the Interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J Virol 2013; 87: 11388–11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dezzutti CS, Uranker K, Bunge KE, Richardson-Harman N, Macio I, Hillier SL . HIV-1 infection of female genital tract tissue for use in prevention studies: short title: ex vivo challenge using female tissue. J Acquir Immune Defic Syndr 2013; 63: 548–554.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haase AT . Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu Rev Med 2011; 62: 127–139.

    Article  CAS  PubMed  Google Scholar 

  6. Hladik F, McElrath MJ . Setting the stage: host invasion by HIV. Nat Rev Immunol 2008; 8: 447–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cole AM, Cole AL . Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am J Reprod Immunol 2008; 59: 27–34.

    Article  CAS  PubMed  Google Scholar 

  8. Ghosh M, Fahey JV, Shen Z, Lahey T, Cu-Uvin S, Wu Z et al. Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies. PLoS One 2010; 5: e11366.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaushic C, Ferreira VH, Kafka JK, Nazli A . HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol 2010; 63: 566–575.

    Article  CAS  PubMed  Google Scholar 

  10. King AE, Critchley HO, Kelly RW . Presence of secretory leukocyte protease inhibitor in human endometrium and first trimester decidua suggests an antibacterial protective role. Mol Hum Reprod 2000; 6: 191–196.

    Article  CAS  PubMed  Google Scholar 

  11. Novak RM, Donoval BA, Graham PJ, Boksa LA, Spear G, Hershow RC et al. Cervicovaginal levels of lactoferrin, secretory leukocyte protease inhibitor, and RANTES and the effects of coexisting vaginoses in human immunodeficiency virus (HIV)-seronegative women with a high risk of heterosexual acquisition of HIV infection. Clin Vacc Immunol 2007; 14: 1102–1107.

    Article  CAS  Google Scholar 

  12. Shukair SA, Allen SA, Cianci GC, Stieh DJ, Anderson MR, Baig SM et al. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. Mucosal Immunol 2013; 6: 427–434.

    Article  CAS  PubMed  Google Scholar 

  13. Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 2007; 26: 257–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turville SG, Peretti S, Pope M . Lymphocyte-dendritic cell interactions and mucosal acquisition of SIV/HIV infection. Curr Opin HIV AIDS 2006; 1: 3–9.

    Article  PubMed  Google Scholar 

  15. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 2010; 329: 1168–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feldblum PJ, Adeiga A, Bakare R, Wevill S, Lendvay A, Obadaki F et al. SAVVY vaginal gel (C31G) for prevention of HIV infection: a randomized controlled trial in Nigeria. PLoS One 2008; 3: e1474.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Halpern V, Ogunsola F, Obunge O, Wang CH, Onyejepu N, Oduyebo O et al. Effectiveness of cellulose sulfate vaginal gel for the prevention of HIV infection: results of a phase III trial in Nigeria. PLoS One 2008; 3: e3784.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McCormack S, Ramjee G, Kamali A, Rees H, Crook AM, Gafos M et al. PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 2010; 376: 1329–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peterson L, Nanda K, Opoku BK, Ampofo WK, Owusu-Amoako M, Boakye AY et al. SAVVY (C31G) gel for prevention of HIV infection in women: a Phase 3, double-blind, randomized, placebo-controlled trial in Ghana. PLoS One 2007; 2: e1312.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Plagianos MG, Friedland B et al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet 2008; 372: 1977–1987.

    Article  CAS  PubMed  Google Scholar 

  21. Van Damme L, Govinden R, Mirembe FM, Guedou F, Solomon S, Becker ML et al. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med 2008; 359: 463–472.

    Article  CAS  PubMed  Google Scholar 

  22. Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, Rees H et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet 2002; 360: 971–977.

    Article  CAS  PubMed  Google Scholar 

  23. Heise LL, Watts C, Foss A, Trussell J, Vickerman P, Hayes R et al. Apples and oranges? Interpreting success in HIV prevention trials. Contraception 2011; 83: 10–15.

    Article  PubMed  Google Scholar 

  24. Hankins CA, Dybul MR . The promise of pre-exposure prophylaxis with antiretroviral drugs to prevent HIV transmission: a review. Curr Opin HIV AIDS 2013; 8: 50–58.

    Article  CAS  PubMed  Google Scholar 

  25. Dey B, Lagenaur LA, Lusso P . Protein-based HIV-1 microbicides. Curr HIV Res 2013; 11: 576–594.

    Article  CAS  PubMed  Google Scholar 

  26. Masse BR, Boily MC, Dimitrov D, Desai K . Efficacy dilution in randomized placebo-controlled vaginal microbicide trials. Emerg Themes Epidemiol 2009; 6: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pace CS, Song R, Ochsenbauer C, Andrews CD, Franco D, Yu J et al. Bispecific antibodies directed to CD4 domain 2 and HIV envelope exhibit exceptional breadth and picomolar potency against HIV-1. Proc Natl Acad Sci USA 2013; 110: 13540–13545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477: 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D . Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2012; 481: 81–84.

    Article  CAS  Google Scholar 

  30. Clark KR . Recent advances in recombinant adeno-associated virus vector production. Kidney Int 2002; 61 (Suppl) S9–15.

    Article  PubMed  Google Scholar 

  31. Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 2009; 15: 901–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schultz BR, Chamberlain JS . Recombinant adeno-associated virus transduction and integration. Mol Ther 2008; 16: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao PJ, Lentz TB, Samulski RJ . Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Therap Deliv 2012; 3: 835–856.

    Article  CAS  Google Scholar 

  34. Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci USA 2009; 106: 16363–16368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR . Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002; 76: 8769–8775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 2014; 20: 296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abdel-Motal UM, Sarkis PT, Han T, Pudney J, Anderson DJ, Zhu Q et al. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro. PLoS One 2011; 6: e26473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan Z, Lei-Butters DC, Keiser NW, Engelhardt JF . Distinct transduction difference between adeno-associated virus type 1 and type 6 vectors in human polarized airway epithelia. Gene Therapy 2013; 20: 328–337.

    Article  CAS  PubMed  Google Scholar 

  39. Limberis MP, Adam VS, Wong G, Gren J, Kobasa D, Ross TM et al. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci Transl Med 2013; 5: 187ra72.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Limberis MP, Wilson JM . Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA 2006; 103: 12993–12998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV . Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther 2012; 20: 329–338.

    Article  CAS  PubMed  Google Scholar 

  42. Locke M, Ussher JE, Mistry R, Taylor JA, Dunbar PR . Transduction of human adipose-derived mesenchymal stem cells by recombinant adeno-associated virus vectors. Tissue Eng Part C 2011; 17: 949–959.

    Article  CAS  Google Scholar 

  43. Veldwijk MR, Sellner L, Stiefelhagen M, Kleinschmidt JA, Laufs S, Topaly J et al. Pseudotyped recombinant adeno-associated viral vectors mediate efficient gene transfer into primary human CD34(+) peripheral blood progenitor cells. Cytotherapy 2010; 12: 107–112.

    Article  CAS  PubMed  Google Scholar 

  44. Joag SV . Primate models of AIDS. Microbes Infect/Inst Pasteur 2000; 2: 223–229.

    Article  CAS  Google Scholar 

  45. Lackner AA, Veazey RS . Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu Rev Med 2007; 58: 461–476.

    Article  CAS  PubMed  Google Scholar 

  46. Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, Cheng-Mayer C et al. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 2001; 75: 8340–8347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fichorova RN, Anderson DJ . Differential expression of immunobiological mediators by immortalized human cervical and vaginal epithelial cells. Biol Reprod 1999; 60: 508–514.

    Article  CAS  PubMed  Google Scholar 

  48. Fichorova RN, Rheinwald JG, Anderson DJ . Generation of papillomavirus-immortalized cell lines from normal human ectocervical, endocervical, and vaginal epithelium that maintain expression of tissue-specific differentiation proteins. Biol Reprod 1997; 57: 847–855.

    Article  CAS  PubMed  Google Scholar 

  49. Bobardt MD, Chatterji U, Selvarajah S, Van der Schueren B, David G, Kahn B et al. Cell-free human immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J Virol 2007; 81: 395–405.

    Article  CAS  PubMed  Google Scholar 

  50. Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 2003; 9: 343–346.

    Article  CAS  PubMed  Google Scholar 

  51. Mitsunaga M, Kosaka N, Kines RC, Roberts JN, Lowy DR, Schiller JT et al. In vivo longitudinal imaging of experimental human papillomavirus infection in mice with a multicolor fluorescence mini-endoscopy system. Cancer Prev Res (Phila) 2011; 4: 767–773.

    Article  Google Scholar 

  52. Gordon SN, Kines RC, Kutsyna G, Ma ZM, Hryniewicz A, Roberts JN et al. Targeting the vaginal mucosa with human papillomavirus pseudovirion vaccines delivering simian immunodeficiency virus DNA. J Immunol 2012; 188: 714–723.

    Article  CAS  PubMed  Google Scholar 

  53. Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH . Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene therapy 2013; 20: 35–42.

    Article  CAS  PubMed  Google Scholar 

  54. Wheeler LA, Vrbanac V, Trifonova R, Brehm MA, Gilboa-Geffen A, Tanno S et al. Durable knockdown and protection from HIV Transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 2013; 21: 1378–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jang JH, Koerber JT, Kim JS, Asuri P, Vazin T, Bartel M et al. An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther 2011; 19: 667–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kauss MA, Smith LJ, Zhong L, Srivastava A, Wong KK Jr., Chatterjee S . Enhanced long-term transduction and multilineage engraftment of human hematopoietic stem cells transduced with tyrosine-modified recombinant adeno-associated virus serotype 2. Hum Gene Ther 2010; 21: 1129–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li M, Jayandharan GR, Li B, Ling C, Ma W, Srivastava A et al. High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther 2010; 21: 1527–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bartel MA, Weinstein JR, Schaffer DV . Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy 2012; 19: 694–700.

    Article  CAS  PubMed  Google Scholar 

  59. Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM, Bleeker WK et al. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat Med 2009; 15: 951–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hur EM, Patel SN, Shimizu S, Rao DS, Gnanapragasam PN, An DS et al. Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood 2012; 120: 4571–4582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 2012; 492: 118–122.

    Article  CAS  PubMed  Google Scholar 

  62. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21: 704–712.

    Article  CAS  PubMed  Google Scholar 

  63. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM . Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199: 381–390.

    Article  PubMed  Google Scholar 

  64. Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T . Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013; 24: 59–67.

    Article  CAS  PubMed  Google Scholar 

  65. Monteilhet V, Saheb S, Boutin S, Leborgne C, Veron P, Montus MF et al. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol Ther 2011; 19: 2084–2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  68. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 2008; 28: 2303–2304.

    Article  CAS  PubMed  Google Scholar 

  69. Hareendran S, Balakrishnan B, Sen D, Kumar S, Srivastava A, Jayandharan GR . Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 2013; 23: 399–413.

    Article  CAS  PubMed  Google Scholar 

  70. Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med 2013; 5: 194ra92.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhu J, Huang X, Yang Y . The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J Clin Invest 2009; 119: 2388–2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malhomme O, Dutheil N, Rabreau M, Armbruster-Moraes E, Schlehofer JR, Dupressoir T . Human genital tissues containing DNA of adeno-associated virus lack DNA sequences of the helper viruses adenovirus, herpes simplex virus or cytomegalovirus but frequently contain human papillomavirus DNA. J Gen Virol 1997; 78 (Part 8) 1957–1962.

    Article  CAS  PubMed  Google Scholar 

  73. Tobiasch E, Rabreau M, Geletneky K, Larue-Charlus S, Severin F, Becker N et al. Detection of adeno-associated virus DNA in human genital tissue and in material from spontaneous abortion. J Med Virol 1994; 44: 215–222.

    Article  CAS  PubMed  Google Scholar 

  74. Schlehofer JR, Boeke C, Reuland M, Eggert-Kruse W . Presence of DNA of adeno-associated virus in subfertile couples, but no association with fertility factors. Hum Reprod 2012; 27: 770–778.

    Article  CAS  PubMed  Google Scholar 

  75. Dereuddre-Bosquet N, Morellato-Castillo L, Brouwers J, Augustijns P, Bouchemal K, Ponchel G et al. MiniCD4 microbicide prevents HIV infection of human mucosal explants and vaginal transmission of SHIV(162P3) in cynomolgus macaques. PLoS Pathogen 2012; 8: e1003071.

    Article  CAS  Google Scholar 

  76. Veselinovic M, Neff CP, Mulder LR, Akkina R . Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology 2012; 432: 505–510.

    Article  CAS  PubMed  Google Scholar 

  77. Wang G, Watson KM, Peterkofsky A, Buckheit RW Jr . Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 2010; 54: 1343–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamamoto HS, Xu Q, Fichorova RN . Homeostatic properties of Lactobacillus jensenii engineered as a live vaginal anti-HIV microbicide. BMC Microbiol 2013; 13: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harouse JM, Gettie A, Tan RC, Blanchard J, Cheng-Mayer C . Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 1999; 284: 816–819.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dennis Burton (The Scripps Research Institute, La Jolla, CA, USA) for providing the scFv b12DNA plasmid, and Leonidas Stamatatos for providing the SHIV162p4 virus. We thank clinical staff Joshua Kramer, Amber Hoggatt and Matt Beck for veterinary services and Karen Boisvert for microscopy and immunofluorescence assistance. This work was supported by NIH R21/R33 AI079767 (to WAM), by the New England Primate Research Center Base Grant P51OD011103-51 (NEPRC) and the T32 Training Grant T32OD011064 (to SW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W A Marasco.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Motal, U., Harbison, C., Han, T. et al. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer. Gene Ther 21, 802–810 (2014). https://doi.org/10.1038/gt.2014.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.56

This article is cited by

Search

Quick links