Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of TLR9 by incorporated pDNA within PEG-coated lipoplex enhances anti-PEG IgM production

Abstract

Cationic liposome represents a promising alternative to viral vectors for the delivery of therapeutic genes. For in vivo use, surface modification of the liposome with polyethylene glycol (PEG) is frequently applied to achieve gene-expression in the targeted tissue. However, we have reported that PEG-coated liposomes have induced anti-PEG IgM, which has caused subsequent doses of PEG-coated liposome to be rapidly cleared from blood circulation, and the complexation of pDNA electrostatically associated with liposome surface has enhanced this antibody response. In this study, we investigated how a Toll-like receptor (TLR) might enhance anti-PEG IgM production. PEG-coated pDNA-lipoplex (PDCL) was injected into either wild type, MyD88 (all TLR adaptor protein, independent of TLR3) knock out (KO) or TLR9 KO mice, and the anti-PEG IgM production levels were detected. Attenuated anti-PEG IgM production following the injection of PDCL was observed in both MyD88 and TLR9 KO mice compared to wild type mice, probably due to the abolished induction of cytokines in both MyD88 and TLR9 KO mice. Our results suggest that TLR, exclusively TLR9, signaling plays a potential role in the enhanced anti-PEG IgM production following the injection of PDCL. This result may have important implications for the design and development of an efficient PEG-coated non-viral gene vector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen SH, Zhaori G . Potential clinical applications of siRNA technique: benefits and limitations. Eur J Clin Invest 2011; 41: 221–232.

    Article  CAS  PubMed  Google Scholar 

  2. Deshayes S, Morris M, Heitz F, Divita G . Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliver Rev 2008; 60 (4-5): 537–547.

    Article  CAS  Google Scholar 

  3. Lee SY, Huh MS, Lee S, Lee SJ, Chung H, Park JH et al. Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release 2010; 141: 339–346.

    Article  CAS  PubMed  Google Scholar 

  4. Sparks J, Slobodkin G, Matar M, Congo R, Ulkoski D, Rea-Ramsey A et al. Versatile cationic lipids for siRNA delivery. J Control Release 2012; 158: 269–276.

    Article  CAS  PubMed  Google Scholar 

  5. Pires P, Simoes S, Nir S, Gaspar R, Duzgunes N, de Lima MCP . Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Bba-Biomembranes 1999; 1418: 71–84.

    Article  CAS  PubMed  Google Scholar 

  6. da Cruz MT, Simoes S, Pires PP, Nir S, de Lima MC . Kinetic analysis of the initial steps involved in lipoplex—cell interactions: effect of various factors that influence transfection activity. Biochim Biophys Acta 2001; 1510 (1-2): 136–151.

    Article  CAS  PubMed  Google Scholar 

  7. Li W, Szoka FC Jr . Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007; 24: 438–449.

    Article  PubMed  Google Scholar 

  8. Drummond DC, Meyer O, Hong KL, Kirpotin DB, Papahadjopoulos D . Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51: 691–743.

    CAS  PubMed  Google Scholar 

  9. Balazs DA, Godbey W . Liposomes for use in gene delivery. J Drug Deliv 2011; 2011: 326497.

    Article  PubMed  Google Scholar 

  10. Decastro M, Saijoh Y, Schoenwolf GC . Optimized cationic lipid-based gene delivery reagents for use in developing vertebrate embryos. Dev Dynam 2006; 235: 2210–2219.

    Article  CAS  Google Scholar 

  11. Judge A, McClintock K, Phelps JR, MacLachlan I . Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther 2006; 13: 328–337.

    Article  CAS  PubMed  Google Scholar 

  12. Kaminskas LM, Mcleod VM, Porter CJH, Boyd BJ . Differences in Colloidal Structure of PEGylated Nanomaterials Dictate the Likelihood of Accelerated Blood Clearance. J Pharm Sci-Us 2011; 100: 5069–5077.

    Article  CAS  Google Scholar 

  13. Abu Lila AS, Kiwada H, Ishida T . The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J Control Release 2013; 172: 38–47.

    Article  CAS  PubMed  Google Scholar 

  14. Saadati R, Dadashzadeh S, Abbasian Z, Soleimanjahi H . Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: effects of polymer dose, PEG coating, and encapsulated anticancer drug. Pharm Res 2013; 30: 985–995.

    Article  CAS  PubMed  Google Scholar 

  15. Koide H, Asai T, Kato H, Ando H, Shiraishi K, Yokoyama M et al. Size-dependent induction of accelerated blood clearance phenomenon by repeated injections of polymeric micelles. Int J Pharmaceut 2012; 432 (1-2): 75–79.

    Article  CAS  Google Scholar 

  16. Tagami T, Nakamura K, Shimizu T, Yamazaki N, Ishida T, Kiwada H . CpG motifs in pDNA-sequences increase anti-PEG IgM production induced by PEG-coated pDNA-lipoplexes. J Control Release 2010; 142: 160–166.

    Article  CAS  PubMed  Google Scholar 

  17. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  PubMed  Google Scholar 

  18. West AP, Koblansky AA, Ghosh S . Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Bi 2006; 22: 409–437.

    Article  CAS  Google Scholar 

  19. Ishida T, Ichihara M, Wang XY, Kiwada H . Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 2006; 115: 243–250.

    Article  CAS  PubMed  Google Scholar 

  20. Tagami T, Nakamura K, Shimizu T, Ishida T, Kiwada H . Effect of siRNA in PEG-coated siRNA-lipoplex on anti-PEG IgM production. J Control Release 2009; 137 (3-4): 234–240.

    Article  CAS  PubMed  Google Scholar 

  21. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143–150.

    Article  CAS  PubMed  Google Scholar 

  22. Kolka JA, Vreede AP, Roessler BJ . Lipopolysaccharide recognition protein, MD-2, facilitates cellular uptake of E-coli-derived plasmid DNA in synovium. J Gene Med 2005; 7: 956–964.

    Article  CAS  PubMed  Google Scholar 

  23. Patil SD, Rhodes DG, Burgess DJ . DNA-based therapeutics and DNA delivery systems: A comprehensive review. Aaps J 2005; 7: E61–E77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Semple SC, Harasym TO, Clow KA, Ansell SM, Klimuk SK, Hope MJ . Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid. J Pharmacol Exp Ther 2005; 312: 1020–1026.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts TL, Sweet MJ, Hume DA, Stacey KJ . Cutting edge: Species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified ohgonucleotides. J Immunol 2005; 174: 605–608.

    Article  CAS  PubMed  Google Scholar 

  26. Ishida T, Harada M, Wang XY, Ichihara M, Irimura K, Kiwada H . Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 2005; 105: 305–317.

    Article  CAS  PubMed  Google Scholar 

  27. Cerutti A, Cols M, Puga I . Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013; 13: 118–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Desmet CJ, Ishii KJ . Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature Reviews Immunology 2012; 12: 479–491.

    Article  CAS  PubMed  Google Scholar 

  29. Lanzavecchia A, Sallusto F . Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr Opin Immunol 2007; 19: 268–274.

    Article  CAS  PubMed  Google Scholar 

  30. Rickert RC, Rajewsky K, Roes J . Impairment of T-Cell-Dependent B-Cell Responses and B-1 Cell-Development in Cd19-Deficient Mice. Nature 1995; 376: 352–355.

    Article  CAS  PubMed  Google Scholar 

  31. Maizels N, Lau JC, Blier PR, Bothwell A . The T-cell independent antigen, NP-ficoll, primes for a high affinity IgM anti-NP response. Mol Immunol 1988; 25: 1277–1282.

    Article  CAS  PubMed  Google Scholar 

  32. Swanson CL, Wilson TJ, Strauch P, Colonna M, Pelanda R, Torres RM, Type I . IFN enhances follicular B cell contribution to the T cell-independent antibody response. J Exp Med 2010; 207: 1485–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J . Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003; 19: 225–234.

    Article  CAS  PubMed  Google Scholar 

  34. Hatakeyama H, Ito E, Yamamoto M, Akita H, Hayashi Y, Kajimoto K et al. A DNA Microarray-based Analysis of the Host Response to a Nonviral Gene Carrier: A Strategy for Improving the Immune Response. Mol Ther 2011; 19: 1487–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tagami T, Uehara Y, Moriyoshi N, Ishida T, Kiwada H . Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. J Control Release 2011; 151: 149–154.

    Article  CAS  PubMed  Google Scholar 

  36. Bartlett GR . Colorimetric assay methods for free and phosphorylated glyceric acids. J Biol Chem 1959; 234: 469–471.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr JL McDonald for his kind assistance in writing the manuscript. This study was supported, in part, by the Takeda Science Foundation and by a Grant-in-Aid for Scientific Research (B) (23390012) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ishida.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, Y., Uehara, Y., Abu Lila, A. et al. Activation of TLR9 by incorporated pDNA within PEG-coated lipoplex enhances anti-PEG IgM production. Gene Ther 21, 593–598 (2014). https://doi.org/10.1038/gt.2014.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.32

Search

Quick links