Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β1-siRNA delivery with nanoparticles inhibits peritoneal fibrosis

Subjects

Abstract

Gene therapies may be promising for the treatment of peritoneal fibrosis (PF) in subjects undergoing peritoneal dialysis (PD). However, a method of delivery of treatment genes to the peritoneum is lacking. We attempted to develop an in vivo small interfering RNA (siRNA) delivery system with liposome-based nanoparticles (NPs) to the peritoneum to inhibit PF. Transforming growth factor (TGF)-β1-siRNAs encapsulated in NPs (TGF-β1-siRNAs-NPs) dissolved in PD fluid were injected into the peritoneum of mice with PF three times a week for 2 weeks. TGF-β1-siRNAs-NPs knocked down TGF-β1 expression significantly in the peritoneum and inhibited peritoneal thickening with fibrous changes. TGF-β1-siRNAs-NPs also inhibited the increase of expression of α-smooth muscle actin-positive myofibroblasts. These results suggest that the TGF-β1-siRNA delivery system with NPs described here could be an effective therapeutic option for PF in subjects undergoing PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Krediet RT, Lindholm B, Rippe B . Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000; 20: S22–S42.

    PubMed  Google Scholar 

  2. Gandhi VC, Humayun HM, Ing TS, Daugirdas JT, Jablokow VR, Iwatsuki S et al. Sclerotic thickening of the peritoneal membrane in maintenance peritoneal dialysis patients. Arch Intern Med 1980; 140: 1201–1203.

    Article  CAS  Google Scholar 

  3. Ronco C, Feriani M, Chiaramonte S, Brendolan A, Bragantini L, Conz P et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int 1990; 10: 119–126.

    CAS  PubMed  Google Scholar 

  4. Devuyst O, Margetts PJ, Topley N . The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 2010; 21: 1077–1085.

    Article  CAS  Google Scholar 

  5. Margetts PJ, Bonniaud P . Basic mechanisms and clinical implications of peritoneal fibrosis. Perit Dial Int 2003; 23: 530–541.

    CAS  PubMed  Google Scholar 

  6. Hannon GJ . RNA interference. Nature 2002; 418: 244–251.

    Article  CAS  Google Scholar 

  7. Tijsterman M, Ketting RF, Plasterk RH . The genetics of RNA silencing. Annu Rev Genet 2002; 36: 489–519.

    Article  CAS  Google Scholar 

  8. Dykxhoorn DM, Lieberman J . The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005; 56: 401–423.

    Article  CAS  Google Scholar 

  9. Sledz CA, Williams BR . RNA interference in biology and disease. Blood 2005; 106: 787–794.

    Article  CAS  Google Scholar 

  10. Leung RK, Whittaker PA . RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107: 222–239.

    Article  CAS  Google Scholar 

  11. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J . Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007; 6: 443–453.

    Article  CAS  Google Scholar 

  12. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173–178.

    Article  CAS  Google Scholar 

  13. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006; 439: 89–94.

    Article  CAS  Google Scholar 

  14. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493–501.

    Article  CAS  Google Scholar 

  15. Yao Q, Pawlaczyk K, Ayala ER, Styszynski A, Breborowicz A, Heimburger O et al. The role of the TGF/Smad signaling pathway in peritoneal fibrosis induced by peritoneal dialysis solutions. Nephron Exp Nephrol 2008; 109: e71–e78.

    Article  CAS  Google Scholar 

  16. Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano ML et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 2011; 22: 1682–1695.

    Article  CAS  Google Scholar 

  17. Li XJ, Sun L, Xiao L, Liu FY . Gene delivery in peritoneal dialysis related peritoneal fibrosis research. Chin Med J (Engl) 2012; 125: 2219–2224.

    CAS  Google Scholar 

  18. Motomura Y, Kanbayashi H, Khan WI, Deng Y, Blennerhassett PA, Margetts PJ et al. The gene transfer of soluble VEGF type I receptor (Flt-1) attenuates peritoneal fibrosis formation in mice but not soluble TGF-beta type II receptor gene transfer. Am J Physiol Gastrointest Liver Physiol 2005; 288: G143–G150.

    Article  CAS  Google Scholar 

  19. Margetts PJ, Gyorffy S, Kolb M, Yu L, Hoff CM, Holmes CJ et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol 2002; 13: 721–728.

    CAS  PubMed  Google Scholar 

  20. Nishino T, Miyazaki M, Abe K, Furusu A, Mishima Y, Harada T et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. Kidney Int 2003; 64: 887–896.

    Article  CAS  Google Scholar 

  21. Guo H, Leung JC, Chan LY, Tsang AW, Lam MF, Lan HY et al. Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Therapy 2007; 14: 1712–1720.

    Article  Google Scholar 

  22. Kikuchi A, Aoki Y, Sugaya S, Serikawa T, Takakuwa K, Tanaka K et al. Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor. Hum Gene Ther 1999; 10: 947–955.

    Article  CAS  Google Scholar 

  23. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008; 26: 431–442.

    Article  CAS  Google Scholar 

  24. Wang X, Podila R, Shannahan JH, Rao AM, Brown JM . Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Int J Nanomedicine 2013; 8: 1733–1748.

    PubMed  PubMed Central  Google Scholar 

  25. Ban M, Langonne I, Huguet N, Guichard Y, Goutet M . Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett 2013; 216: 31–39.

    Article  CAS  Google Scholar 

  26. Morishige T, Yoshioka Y, Inakura H, Tanabe A, Narimatsu S, Yao X et al. Suppression of nanosilica particle-induced inflammation by surface modification of the particles. Arch Toxicol 2012; 86: 1297–1307.

    Article  CAS  Google Scholar 

  27. Li J, Qu X, Bertram JF . Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 2009; 175: 1380–1388.

    Article  CAS  Google Scholar 

  28. Bellini A, Mattoli S . The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 2007; 87: 858–870.

    Article  CAS  Google Scholar 

  29. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G . Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122: 103–111.

    Article  CAS  Google Scholar 

  30. Wang X, Nie J, Jia Z, Feng M, Zheng Z, Chen W et al. Impaired TGF-beta signalling enhances peritoneal inflammation induced by E. coli in rats. Nephrol Dial Transplant 2010; 25: 399–412.

    Article  CAS  Google Scholar 

  31. Hirahara I, Kusano E, Yanagiba S, Miyata Y, Ando Y, Muto S et al. Peritoneal injury by methylglyoxal in peritoneal dialysis. Perit Dial Int 2006; 26: 380–392.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Motomu Shimaoka (Professor of Molecular Pathobiology, Mie University School of Medicine) for discussion and comments regarding the manuscript. This work was supported by JSPS KAKENHI (grant number 25461252) and MEXT-Supported Program for Strategic Research Foundations at Private Universities, 2013–2017 (S1211029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Morishita.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshizawa, H., Morishita, Y., Watanabe, M. et al. TGF-β1-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther 22, 333–340 (2015). https://doi.org/10.1038/gt.2014.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.116

This article is cited by

Search

Quick links