Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sustained induction of neuronal addition to the adult rat neostriatum by AAV4-delivered noggin and BDNF

A Corrigendum to this article was published on 10 November 2011

Abstract

Intraventricular ependymal infection by adenoviruses expressing brain-derived neurotrophic factor (BDNF) and noggin is sufficient to induce the heterotopic recruitment of new medium spiny neurons to the adult neostriatum, from endogenous subependymal neural progenitor cells. This approach was found to slow disease progression and extend survival in an R6/2 mouse model of Huntington's disease (HD). However, the practical therapeutic value of this strategy is limited by the transient expression and immunogenicity of adenoviral vectors. In addition, it has been unclear whether sustained overexpression of BDNF and noggin would yield similarly sustained neuronal production and striatal recruitment, or whether progenitor depletion or tachyphylaxis might supervene to limit the therapeutic potential of this approach. To address these issues, we used adeno-associated virus serotype 4 (AAV4), an ependymotrophic vector that is neither immunogenic nor neurotoxic, to achieve sustained BDNF and noggin expression. Using AAV4, we found that BDNF and noggin achieved levels sufficient to initiate and maintain, for at least 4 months, ongoing neuronal addition to the neostriatum and olfactory bulb. Over this period, we noted no diminution of treatment-associated neuronal recruitment from resident progenitors. AAV4:BDNF and noggin-induced neuronal addition may thus provide a means to provide longlasting and persistent striatal neuronal replacement in conditions of striatal neuronal loss, such as HD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AAV4:

adeno-associated virus serotype 4

BDNF:

brain-derived neurotrophic factor

IRES:

internal ribosome entry site

DARPP-32:

dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32 000 Da

EGFP:

enhanced green fluorescent protein

BrdU:

5-bromo-2′-deoxyuridine

DCX:

doublecortin

MSN:

medium spiny neuron

OB:

olfactory bulb

CNS:

central nervous system

FMS:

fluorescent microsphere

TUNEL:

terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling

ANOVA:

analysis of variance.

References

  1. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A . Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97: 703–716.

    Article  CAS  PubMed  Google Scholar 

  2. Goldman SA, Luskin MB . Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci 1998; 21: 107–114.

    Article  CAS  PubMed  Google Scholar 

  3. Luskin MB . Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993; 11: 173–189.

    Article  CAS  PubMed  Google Scholar 

  4. Lois C, Alvarez-Buylla A . Long-distance neuronal migration in the adult mammalian brain. Science 1994; 264: 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  5. Zigova T, Pencea V, Wiegand SJ, Luskin MB . Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 1998; 11: 234–245.

    Article  CAS  PubMed  Google Scholar 

  6. Kornack DR, Rakic P . The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 2001; 98: 4752–4757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sanai N, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A . Comment on ‘Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension’. Science 2007; 318: 393; author reply 393.

    Article  CAS  PubMed  Google Scholar 

  8. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 2007; 315: 1243–1249.

    Article  CAS  PubMed  Google Scholar 

  9. Pincus DW, Keyoung HM, Harrison-Restelli C, Goodman RR, Fraser RA, Edgar M et al. Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann Neurol 1998; 43: 576–585.

    Article  CAS  PubMed  Google Scholar 

  10. Roy NS, Benraiss A, Wang S, Fraser RA, Goodman R, Couldwell WT et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res 2000; 59: 321–331.

    Article  CAS  PubMed  Google Scholar 

  11. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 2006; 494: 415–434.

    Article  PubMed  Google Scholar 

  12. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O . Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002; 8: 963–970.

    Article  CAS  PubMed  Google Scholar 

  13. Magavi S, Leavitt B, Macklis J . Induction of neurogenesis in the neocortex of adult mice. Nature 2000; 405: 951–955.

    Article  CAS  PubMed  Google Scholar 

  14. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110: 429–441.

    Article  CAS  PubMed  Google Scholar 

  15. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B . Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 2004; 127: 319–332.

    Article  CAS  PubMed  Google Scholar 

  16. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM . Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 2002; 52: 802–813.

    Article  PubMed  Google Scholar 

  17. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D et al. FGF2 promotes neurogenesis and neuroprotection in a transgenic mouse model of Huntington's disease. Proc Natl Acad Sci USA 2005; 102: 18189–18194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB . Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 2001; 21: 6706–6717.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA . Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001; 21: 6718–6731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bedard A, Gravel C, Parent A . Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res 2006; 170: 501–512.

    Article  CAS  PubMed  Google Scholar 

  21. Chmielnicki E, Benraiss A, Economides AN, Goldman SA . Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci 2004; 24: 2133–2142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gomes WA, Mehler MF, Kessler JA . Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 2003; 255: 164–177.

    Article  CAS  PubMed  Google Scholar 

  23. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A . Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000; 28: 713–726.

    Article  CAS  PubMed  Google Scholar 

  24. Ross CA, Becher MW, Colomer V, Engelender S, Wood JD, Sharp AH . Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis and pathology. Brain Pathol 1997; 7: 1003–1016.

    Article  CAS  PubMed  Google Scholar 

  25. Bates GP, Mangiarini L, Mahal A, Davies SW . Transgenic models of Huntington's disease. Hum Mol Genet 1997; 6: 1633–1637.

    Article  CAS  PubMed  Google Scholar 

  26. Cho SR, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman SA . Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest 2007; 117: 2889–2902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Daya S, Berns KI . Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21: 583–593.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Goncalves MA . Adeno-associated virus: from defective virus to effective vector. Virol J 2005; 2: 43.

    Article  PubMed Central  PubMed  Google Scholar 

  29. McCarty DM, Young Jr SM, Samulski RJ . Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004; 38: 819–845.

    Article  CAS  PubMed  Google Scholar 

  30. Sevin C, Benraiss A, Van Dam D, Bonnin D, Nagels G, Verot L et al. Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum Mol Genet 2006; 15: 53–64.

    Article  CAS  PubMed  Google Scholar 

  31. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006; 14: 564–570.

    Article  CAS  PubMed  Google Scholar 

  32. Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M . Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 2004; 6 (Suppl 1): S212–S222.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  34. Chiorini JA, Yang L, Liu Y, Safer B, Kotin RM . Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997; 71: 6823–6833.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu G, Martins IH, Chiorini JA, Davidson BL . Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Therapy 2005; 12: 1503–1508.

    Article  CAS  PubMed  Google Scholar 

  36. Biebl M, Cooper CM, Winkler J, Kuhn HG . Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 2000; 291: 17–20.

    Article  CAS  PubMed  Google Scholar 

  37. Petreanu L, Alvarez-Buylla A . Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 2002; 22: 6106–6113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamaguchi M, Mori K . Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc Natl Acad Sci USA 2005; 102: 9697–9702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rochefort C, Gheusi G, Vincent JD, Lledo PM . Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002; 22: 2679–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mouret A, Gheusi G, Gabellec MM, de Chaumont F, Olivo-Marin JC, Lledo PM . Learning and survival of newly generated neurons: when time matters. J Neurosci 2008; 28: 11511–11516.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gleeson JG, Lin PT, Flanagan LA, Walsh CA . Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999; 23: 257–271.

    Article  CAS  PubMed  Google Scholar 

  42. Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci USA 1991; 88: 4685–4689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 1996; 44: 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  44. Gustafson EL, Ehrlich ME, Trivedi P, Greengard P . Developmental regulation of phosphoprotein gene expression in the caudate-putamen of rat: an in situ hybridization study. Neuroscience 1992; 51: 65–75.

    Article  CAS  PubMed  Google Scholar 

  45. Alexander GE, Crutcher MD . Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990; 13: 266–271.

    Article  CAS  PubMed  Google Scholar 

  46. Peschanski M, Cesaro P, Hantraye P . Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease. Neuroscience 1995; 68: 273–285.

    Article  CAS  PubMed  Google Scholar 

  47. Katz LC, Burkhalter A, Dreyer WJ . Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 1984; 310: 498–500.

    Article  CAS  PubMed  Google Scholar 

  48. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM . Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92: 1401–1405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Liu G, Martins I, Wemmie JA, Chiorini JA, Davidson BL . Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J Neurosci 2005; 25: 9321–9327.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Galvão RP, Garcia-Verdugo JM, Alvarez-Buylla A . Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci 2008; 28: 13368–13383.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Henry RA, Hughes SM, Connor B . AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 2007; 25: 3513–3525.

    Article  PubMed  Google Scholar 

  52. Reumers V, Deroose CM, Krylyshkina O, Nuyts J, Geraerts M, Mortelmans L et al. Noninvasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells 2008; 26: 2382–2390.

    Article  PubMed  Google Scholar 

  53. Batista CM, Kippin TE, Willaime-Morawek S, Shimabukuro MK, Akamatsu W, van der Kooy D . A progressive and cell non-autonomous increase in striatal neural stem cells in the Huntington's disease R6/2 mouse. J Neurosci 2006; 26: 10452–10460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Phillips W, Morton AJ, Barker RA . Abnormalities of neurogenesis in the R6/2 mouse model of Huntington's disease are attributable to the in vivo microenvironment. J Neurosci 2005; 25: 11564–11576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Paine-Saunders S, Viviano BL, Economides AN, Saunders S . Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J Biol Chem 2002; 277: 2089–2096.

    Article  CAS  PubMed  Google Scholar 

  56. Urabe M, Ding C, Kotin R . Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13: 1935–1943.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NINDS R01NS53546 and R37/R01NS29813. We thank Eric Robbins and Michael Toner for technical support, and the Gene Therapy Core Facility of the University of Iowa for producing the AAV2/4-based viruses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Benraiss or S A Goldman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benraiss, A., Bruel-Jungerman, E., Lu, G. et al. Sustained induction of neuronal addition to the adult rat neostriatum by AAV4-delivered noggin and BDNF. Gene Ther 19, 483–493 (2012). https://doi.org/10.1038/gt.2011.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.114

Keywords

This article is cited by

Search

Quick links