Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A new PG13-based packaging cell line for stable production of clinical-grade self-inactivating γ-retroviral vectors using targeted integration

Abstract

The clinical application of self-inactivating (SIN) retroviral vectors has been hampered by the lack of reliable and efficient vector production technologies. To enable production of SIN γ-retroviral vectors from stable producer clones, a new PG13-based packaging cell, known as PG368, was developed. Viral vector expression constructs can be reliably inserted at a predefined genomic locus of PG368 packaging cells by an Flp-recombinase-mediated targeted cassette exchange (RMCE) reaction. A new, carefully designed vector-targeting construct, pEMTAR-1, eliminated the co-packaging of the selectable marker gene used for the identification of successful recombination at the predefined genomic locus and thus, improved the safety of the production system. Selected clones produced vector supernatants at consistent titers. The targeted insertion of therapeutically relevant SIN vectors for chronic granulomatous disease and X-linked severe combined immunodeficiency into PG368 cells results in stable titers within the range necessary for clinical application. The production of retroviral SIN vectors from stable clinical-grade producer cells is feasible and will contribute to the safe production and application of SIN γ-retroviral vectors for clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cavazzana-Calvo M, Thrasher A, Mavilio F . The future of gene therapy. Nature 2004; 427: 779–781.

    Article  CAS  PubMed  Google Scholar 

  2. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New Engl J Med 2002; 346: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  3. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  4. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    CAS  PubMed  Google Scholar 

  5. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  6. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  7. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    Article  CAS  PubMed  Google Scholar 

  8. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  9. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Negre D, Cosset FL . Vectors derived from simian immunodeficiency virus (SIV). Biochimie 2002; 84: 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  13. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986; 83: 3194–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C . Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2: 435–445.

    Article  CAS  PubMed  Google Scholar 

  15. Schambach A, Bohne J, Chandra S, Will E, Margison GP, Williams DA et al. Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol Ther 2006; 13: 391–400.

    Article  CAS  PubMed  Google Scholar 

  16. Schambach A, Swaney WP, Loo JC . Design and production of retro- and lentiviral vectors for gene expression in hematopoietic cells. Methods Mol Biol 2009; 506: 191–205.

    Article  CAS  PubMed  Google Scholar 

  17. Bode J, Schlake T, Iber M, Schubeler D, Seibler J, Snezhkov E et al. The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 2000; 381: 801–813.

    Article  CAS  PubMed  Google Scholar 

  18. Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H . Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 2007; 18: 411–419.

    Article  CAS  PubMed  Google Scholar 

  19. Schucht R, Coroadinha AS, Zanta-Boussif MA, Verhoeyen E, Carrondo MJ, Hauser H et al. A new generation of retroviral producer cells: predictable and stable virus production by Flp-mediated site-specific integration of retroviral vectors. Mol Ther 2006; 14: 285–292.

    Article  CAS  PubMed  Google Scholar 

  20. Coroadinha AS, Schucht R, Gama-Norton L, Wirth D, Hauser H, Carrondo MJ . The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J Biotechnol 2006; 124: 457–468.

    Article  CAS  PubMed  Google Scholar 

  21. Verhoeyen E, Hauser H, Wirth D . Evaluation of retroviral vector design in defined chromosomal loci by Flp-mediated cassette replacement. Hum Gene Ther 2001; 12: 933–944.

    Article  CAS  PubMed  Google Scholar 

  22. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV . Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65: 2220–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  24. Schlake T, Bode J . Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 1994; 33: 12746–12751.

    Article  CAS  PubMed  Google Scholar 

  25. Riviere I, Brose K, Mulligan RC . Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc Natl Acad Sci USA 1995; 92: 6733–6737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schambach A, Mueller D, Galla M, Verstegen MM, Wagemaker G, Loew R et al. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Therapy 2006; 13: 1524–1533.

    Article  CAS  PubMed  Google Scholar 

  27. Armentano D, Yu SF, Kantoff PW, von Ruden T, Anderson WF, Gilboa E . Effect of internal viral sequences on the utility of retroviral vectors. J Virol 1987; 61: 1647–1650.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adam MA, Miller AD . Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions. J Virol 1988; 62: 3802–3806.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schambach A, Galla M, Maetzig T, Loew R, Baum C . Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors. Mol Ther 2007; 15: 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  30. Chung JH, Bell AC, Felsenfeld G . Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci USA 1997; 94: 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moreno-Carranza B, Gentsch M, Stein S, Schambach A, Santilli G, Rudolf E et al. Transgene optimization significantly improves SIN vector titers, gp91(phox) expression and reconstitution of superoxide production in X-CGD cells. Gene Therapy 2009; 16: 111–118.

    Article  CAS  PubMed  Google Scholar 

  32. Thornhill SI, Schambach A, Howe SJ, Ulaganathan M, Grassman E, Williams D et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 2008; 16: 590–598.

    Article  CAS  PubMed  Google Scholar 

  33. Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK . High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindemann D, Patriquin E, Feng S, Mulligan RC . Versatile retrovirus vector systems for regulated gene expression in vitro and in vivo. Mol Med 1997; 3: 466–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bueler H, Mulligan RC . Induction of antigen-specific tumor immunity by genetic and cellular vaccines against MAGE: enhanced tumor protection by coexpression of granulocyte-macrophage colony-stimulating factor and B7–1. Mol Med 1996; 2: 545–555.

    Article  CAS  PubMed  Google Scholar 

  36. Freas-Lutz DL, Correll PH, Dougherty SF, Xu L, Pluznik DH, Karlsson S . Expression of human glucocerebrosidase in murine macrophages: identification of efficient retroviral vectors. Exp Hematol 1994; 22: 857–865.

    CAS  PubMed  Google Scholar 

  37. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pietschmann T, Heinkelein M, Heldmann M, Zentgraf H, Rethwilm A, Lindemann D . Foamy virus capsids require the cognate envelope protein for particle export. J Virol 1999; 73: 2613–2621.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  41. Loew R, Rausch T . Sensitive, nonradioactive northern blots using alkaline transfer of total RNA and PCR-amplified biotinylated probes. Biotechniques 1994; 17: 1026–1028, 1030.

    Google Scholar 

  42. Gama-Norton L, Herrmann S, Schucht R, Coroadinha A, Loew R, Alves P et al. Retroviral vector performance upon integration in to defined chromosomal loci of modular packaging cell lines. Hum Gene Ther (submitted).

Download references

Acknowledgements

We thank Dr Angelika Lehr for the critical reading of the paper. This study was supported by grants of the German Ministry for Research and Education (TreatID), the Deutsche Forschungsgemeinschaft (DFG, that is, SPP1230 and Excellence Cluster REBIRTH), the CGD Research Trust (Grant J4G/04B/GT to MG and AJT), and the European Union (CONSERT, LSHB-CT-2004–005242; Clinigene, LSHB-CT-2006–018933), and the Else-Kröner-Fresenius-Stiftung (fellowship to AS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Loew or A Schambach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loew, R., Meyer, Y., Kuehlcke, K. et al. A new PG13-based packaging cell line for stable production of clinical-grade self-inactivating γ-retroviral vectors using targeted integration. Gene Ther 17, 272–280 (2010). https://doi.org/10.1038/gt.2009.134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.134

Keywords

This article is cited by

Search

Quick links