Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MAST3: a novel IBD risk factor that modulates TLR4 signaling

Abstract

Inflammatory bowel disease (IBD) is a chronic disorder caused by multiple factors in a genetically susceptible host. Significant advances in the study of genetic susceptibility have highlighted the importance of the innate immune system in this disease. We previously completed a genome-wide linkage study and found a significant locus (IBD6) on chromosome 19p. We were interested in identifying the causal variant in IBD6. We performed a two-stage association mapping study. In stage 1, 1530 single-nucleotide polymorphisms (SNPs) were selected from the HapMap database and genotyped in 761 patients with IBD. Among the SNPs that passed the threshold for replication, 26 were successfully genotyped in 754 additional patients (stage 2). One intronic variant, rs273506, located in the microtubule-associated serine/threonine-protein kinase gene-3 (MAST3), was found to be associated in both stages (pooled P=1.8 × 10−4). We identified four MAST3 coding variants, including a non-synonymous SNP rs8108738, correlated to rs273506 and associated with IBD. To test whether MAST3 was expressed in cells of interest, we performed expression assays, which showed abundant expression of MAST3 in antigen-presenting cells and in lymphocytes. The knockdown of MAST3 specifically decreased Toll-like receptor-4-dependent NF-κB activity. Our findings are additional proofs of the pivotal role played by modulators of NF-κB activity in IBD pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kappelman MD, Rifas-Shiman SL, Kleinman K, Ollendorf D, Bousvaros A, Grand RJ et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clin Gastroenterol Hepatol 2007; 5: 1424–1429.

    Article  PubMed  Google Scholar 

  2. Baumgart DC, Carding SR . Inflammatory bowel disease: cause and immunobiology. Lancet 2007; 369: 1627–1640.

    Article  CAS  PubMed  Google Scholar 

  3. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  PubMed  Google Scholar 

  4. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.

    Article  CAS  PubMed  Google Scholar 

  5. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    Article  CAS  PubMed  Google Scholar 

  6. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franke A, Hampe J, Rosenstiel P, Becker C, Wagner F, Hasler R et al. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE 2007; 2: e691.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39: 207–211.

    Article  CAS  PubMed  Google Scholar 

  9. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 2007; 3: e58.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet 2007; 39: 830–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. WTCCC. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  13. Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66: 1863–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 1998; 95: 7502–7507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma Y, Ohmen JD, Li Z, Bentley LG, McElree C, Pressman S et al. A genome-wide search identifies potential new susceptibility loci for Crohn's disease. Inflamm Bowel Dis 1999; 5: 271–278.

    Article  CAS  PubMed  Google Scholar 

  16. Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J et al. The DNA sequence and biology of human chromosome 19. Nature 2004; 428: 529–535.

    Article  CAS  PubMed  Google Scholar 

  17. Tello-Ruiz MK, Curley C, DelMonte T, Giallourakis C, Kirby A, Miller K et al. Haplotype-based association analysis of 56 functional candidate genes in the IBD6 locus on chromosome 19. Eur J Hum Genet 2006; 14: 780–790.

    Article  CAS  PubMed  Google Scholar 

  18. van Bodegraven AA, Curley CR, Hunt KA, Monsuur AJ, Linskens RK, Onnie CM et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology 2006; 131: 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  19. Steinman L . A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007; 13: 139–145.

    Article  CAS  PubMed  Google Scholar 

  20. NCBI. HomoloGene 2008. http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene In.

  21. Valiente M, Andres-Pons A, Gomar B, Torres J, Gil A, Tapparel C et al. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem 2005; 280: 28936–28943.

    Article  CAS  PubMed  Google Scholar 

  22. Lumeng C, Phelps S, Crawford GE, Walden PD, Barald K, Chamberlain JS . Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci 1999; 2: 611–617.

    Article  CAS  PubMed  Google Scholar 

  23. Sun L, Gu S, Li X, Sun Y, Zheng D, Yu K et al. [Identification of a novel human MAST4 gene, a new member of the microtubule associated serine-threonine kinase family]. Mol Biol (Mosk) 2006; 40: 808–815.

    Article  CAS  Google Scholar 

  24. Walden PD, Cowan NJ . A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette. Mol Cell Biol 1993; 13: 7625–7635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong H, Li H, Chen Y, Zhao J, Unkeless JC . Interaction of TRAF6 with MAST205 regulates NF-kappaB activation and MAST205 stability. J Biol Chem 2004; 279: 43675–43683.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou H, Xiong H, Li H, Plevy SE, Walden PD, Sassaroli M et al. Microtubule-associated serine/threonine kinase-205 kDa and Fc gamma receptor control IL-12 p40 synthesis and NF-kappa B activation. J Immunol 2004; 172: 2559–2568.

    Article  CAS  PubMed  Google Scholar 

  27. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD et al. Genome-wide association defines more than thirty distinct susceptibility loci for Crohn's disease. Nat Genet 2008 (in press). Published online: 29 June 2008; doi:10.1038/ng.175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC et al. A genome-wide association study of global gene expression. Nat Genet 2007; 39: 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  29. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 2002; 99: 4465–4470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGovern D, Powrie F . The IL23 axis plays a key role in the pathogenesis of IBD. Gut 2007; 56: 1333–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gay NJ, Gangloff M . Structure and function of Toll receptors and their ligands. Annu Rev Biochem 2007; 76: 141–165.

    Article  CAS  PubMed  Google Scholar 

  32. De Jager PL, Franchimont D, Waliszewska A, Bitton A, Cohen A, Langelier D et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun 2007; 8: 387–397.

    Article  CAS  PubMed  Google Scholar 

  33. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25: 187–191.

    Article  CAS  PubMed  Google Scholar 

  34. Shen R, Fan JB, Campbell D, Chang W, Chen J, Doucet D et al. High-throughput SNP genotyping on universal bead arrays. Mutat Res 2005; 573: 70–82.

    Article  CAS  PubMed  Google Scholar 

  35. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases DK062432 to JDR and AI062773 to RJX. The Broad Institute Center for Genotyping and Analysis is supported by Grant U54 RR020278 from the National Center for Research Resources. C Labbé is the recipient of a Fond de Recherche en Santé du Québec studentship award. We thank Marcia Budarf, Marie-Pierre Lévesque and Jing Lian for their help in the review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Rioux.

Additional information

Competing interests

The authors have declared that no competing interest exists.

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labbé, C., Goyette, P., Lefebvre, C. et al. MAST3: a novel IBD risk factor that modulates TLR4 signaling. Genes Immun 9, 602–612 (2008). https://doi.org/10.1038/gene.2008.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.57

Keywords

This article is cited by

Search

Quick links