Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AIM associated with the IgM pentamer: attackers on stand-by at aircraft carrier

Abstract

Circulating immunoglobulin M (IgM) exists in a pentameric form, possessing a polyreactive nature that responds not only to foreign antigens but also to autoantigens; thus, it is involved in both beneficial and detrimental immune responses, including protection from infection and the progression of autoimmunity. On the other hand, IgM also behaves as a carrier of the apoptosis inhibitor of macrophage (AIM) protein, storing a large amount of the inactivated form of AIM in the blood through this association. Under different disease conditions, AIM can dissociate from IgM locally or systemically to exert its function, inducing the removal of various biological debris such as excess fat, bacteria, cancer cells or dead cell debris. Most typically, upon induction of acute kidney injury (AKI), IgM-free AIM is filtered by the glomerulus in the kidney, which stimulates the clearance of intraluminal dead cells debris at the obstructed proximal tubules, thereby facilitating the repair of kidney injury. Interestingly, cats exhibit a deficiency in AIM release from IgM, which may increase their susceptibility to renal failure. Conversely, association with AIM inhibits IgM binding to the Fcα/μ receptor on follicular dendritic cells at the splenic germinal center, thereby protecting the IgM immune complex from Fcα/μ receptor-mediated internalization, which supports IgM-dependent antigen presentation to B cells and stimulates high-affinity IgG antibody production. The regulation of AIM–IgM binding, resulting from the discovery of reciprocal actions between AIM and IgM, could lead to the development of novel therapies against different diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Miyazaki T, Hirokami Y, Matsuhashi N, Takatsuka H, Naito M. Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily. J Exp Med 1999; 189: 413–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arai S, Maehara N, Iwamura Y, Honda S, Nakashima K, Kai T et al. Obesity-associated autoantibody production requires AIM to retain IgM immune complex on follicular dendritic cells. Cell Rep 2013; 3: 1187–1198.

    Article  CAS  PubMed  Google Scholar 

  3. Yamazaki T, Mori M, Arai S, Tateishi R, Abe M, Ban M et al. Circulating AIM as an indicator of liver damage and hepatocellular carcinoma in humans. PLoS One 2014; 9: e109123.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Resnick D, Pearson A, Krieger M. The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci 1994; 19: 5–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gebe JA, Kiener PA, Ring HZ, Li X, Francke U, Aruffo A. Molecular cloning, mapping to human chromosome 1 q21-q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins. J Biol Chem 1997; 272: 6151–6158.

    Article  CAS  PubMed  Google Scholar 

  6. Mori M, Kimura H, Iwamura Y, Arai S, Miyazaki T. Modification of N-glycosylation modulates the secretion and lipolytic function of apoptosis inhibitor of macrophage (AIM). FEBS Lett 2012; 586: 3569–3574.

    Article  CAS  PubMed  Google Scholar 

  7. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 2004; 119: 299–309.

    Article  CAS  PubMed  Google Scholar 

  8. Valledor AF, Hsu LC, Ogawa S, Sawka-Verhelle D, Karin M, Glass CK. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc Natl Acad Sci USA 2004; 101: 17813–17818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL et al. A role of the apoptosis inhibitory factor AIM/Sp/Api6 in atherosclerosis development. Cell Metab 2005; 1: 201–213.

    Article  CAS  PubMed  Google Scholar 

  10. Hamada M, Nakamura M, Tran MT, Moriguchi T, Hong C, Ohsumi T et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat Commun 2014; 5: 3147.

    Article  PubMed  Google Scholar 

  11. Tissot JD, Sanchez JC, Vuadens F, Scherl A, Schifferli JA, Hochstrasser DF et al. IgM are associated to Sp alpha (CD5 antigen-like). Electrophoresis 2002; 23: 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  12. Kai T, Yamazaki T, Arai S, Miyazaki T. Stabilization and augmentation of circulating AIM in mice by synthesized IgM-Fc. PLoS One 2014; 9: e97037.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Erlandsson L, Andersson K, Sigvardsson M, Lycke N, Leanderson T. Mice with an inactivated joining chain locus have perturbed IgM secretion. Eur J Immunol 1998; 28: 2355–2365.

    Article  CAS  PubMed  Google Scholar 

  14. Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol 1998; 160: 4776–4787.

    CAS  PubMed  Google Scholar 

  15. Yamazaki S, Sugisawa R, Hiramoto E, Takai R, Matsumoto A, Senda Y et al. A proteolytic modification of AIM promotes its renal excretion. Sci Rep 2016; 6: 38762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurokawa J, Arai S, Nakashima K, Nishijima A, Miyake K, Ose R et al. AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab 2010; 11: 479–492.

    Article  CAS  PubMed  Google Scholar 

  17. Iwamura Y, Mori M, Nakashima K, Mikami T, Murayama K, Arai S et al. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes. Biochem Biophys Res Commun 2012; 422: 476–481.

    Article  CAS  PubMed  Google Scholar 

  18. Maehara N, Arai S, Mori M, Iwamura Y, Kurokawa J, Kai T et al. Circulating AIM prevents hepatocellular carcinoma through complement activation. Cell Rep 2014; 9: 61–74.

    Article  CAS  PubMed  Google Scholar 

  19. Polo S, Pece S, Di Fiore PP. Endocytosis and cancer. Curr Opin Cell Biol 2004; 16: 156–161.

    Article  CAS  PubMed  Google Scholar 

  20. Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 2008; 8: 835–850.

    Article  CAS  PubMed  Google Scholar 

  21. Ozawa T, Maehara N, Kai T, Arai S, Miyazaki T. Dietary fructose-induced hepatocellular carcinoma development manifested in mice lacking apoptosis inhibitor of macrophage (AIM). Genes Cells 2016; 21: 1320–1332.

    Article  CAS  PubMed  Google Scholar 

  22. Vera J, Fenutría R, Cañadas O, Figueras M, Mota R, Sarrias MR et al. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci USA 2009; 106: 1506–1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyazaki T, Arai S. A defense system against multiple diseases via biological garbage clearance mediated by soluble scavenger proteins. Inflamm Regen 2015; 35: 203–209.

    Article  CAS  Google Scholar 

  24. Henson PM, Vandivier RW, Douglas IS. Cell death, remodeling, and repair in chronic obstructive pulmonary disease? Proc Am Thorac Soc 2006; 3: 713–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandahl M, Hunter DM, Strunk KE, Earp HS, Cook RS. Epithelial cell-directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation. BMC Dev Biol 2010; 10: 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A, Borish L et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 2012; 493: 547–551.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 2013; 113: 1004–1012.

    Article  CAS  PubMed  Google Scholar 

  28. Mochizuki A, Pace A, Rockwell CE, Roth KJ, Chow A, O'Brien KM et al. Hepatic stellate cells orchestrate clearance of necrotic cells in a hypoxia-inducible factor-1α-dependent manner by modulating macrophage phenotype in mice. J Immunol 2014; 192: 3847–3857.

    Article  CAS  PubMed  Google Scholar 

  29. Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int 2009; 76: 1089–1097.

    Article  PubMed  Google Scholar 

  30. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 2009; 20: 223–228.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bedford M, Farmer C, Levin A, Ali T, Stevens P. Acute kidney injury and CKD: chicken or egg? Am J Kidney Dis 2012; 59: 485–491.

    Article  PubMed  Google Scholar 

  32. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 2013; 8: 1482–1493.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 2014; 124: 2355–2363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008; 2: 284–291.

    Article  CAS  PubMed  Google Scholar 

  35. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121: 4210–4221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA 2014; 111: 1527–1532.

    Article  CAS  PubMed  Google Scholar 

  37. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med 2016; 22: 183–193.

    Article  CAS  PubMed  Google Scholar 

  38. The American Veterinary Medical Foundation. Total Pet Ownership and Pet Populations. US Pet Ownership and Demographics Sourcebook, Section 1, 2012, American Veterinary Medical Association: Schaumburg, IL, USA..

  39. The European Pet Food Industry.Facts and Figures, 2014. Available at: http://www.fediaf.org/fileadmin/user_upload/Secretariat/facts_and_figures_2014.pdf.

  40. Lulich JP, O’Brien TD, Osborne CA, Polzin DJ. Feline renal failure: questions, answers, questions. Compend Contin Educ Pract Vet 1992; 14: 127–152.

    Google Scholar 

  41. Brown SA. Linking treatment to staging in chronic kidney disease. Consultations in Feline Internal Medicine (edit. By August JR) 2010; 6: 475–482.

    Google Scholar 

  42. White JD, Norris JM, Baral RM, Malik R. Naturally-occurring chronic renal disease in Australian cats: a prospective study of 184 cases. Aust Vet J 2006; 84: 188–194.

    Article  CAS  PubMed  Google Scholar 

  43. White JD, Malik R, Norris JM. Feline chronic kidney disease: can we move from treatment to prevention? Vet J 2011; 190: 317–322.

    Article  PubMed  Google Scholar 

  44. Sugisawa S, Hiramoto E, Matsuoka M, Iwai S, Takai R, Yamazaki T et al. Impact of feline AIM on the susceptibility of cats to renal disease. Sci Rep 2016; 6: 35251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmiedt CW, Brainard BM, Hinson W, Brown SA, Brown CA. Unilateral renal ischemia as a model of acute kidney injury and renal fibrosis in cats. Vet Pathol 2016; 53: 87–101.

    Article  CAS  PubMed  Google Scholar 

  46. Gadjeva MG, Rouseva MM, Zlatarova AS, Reid KB, Kishore U, Kojouharova MS. Interaction of human C1q with IgG and IgM: revisited. Biochemistry 2008; 47: 13093–13102.

    Article  CAS  PubMed  Google Scholar 

  47. Kantor AB, Herzenberg LA. Origin of murine B cell lineages. Annu Rev Immunol 1993; 11: 501–538.

    Article  CAS  PubMed  Google Scholar 

  48. Hardy RR, Hayakawa K. CD5 B cells, a fetal B cell lineage. Adv Immunol 1994; 55: 297–339.

    Article  CAS  PubMed  Google Scholar 

  49. Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol 2000; 37: 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  50. Pepys MB. Role of complement in the induction of immunological responses. Transplant Rev 1976; 32: 93–120.

    CAS  PubMed  Google Scholar 

  51. Ahearn JM, Fearon DT. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol 1989; 46: 183–219.

    Article  CAS  PubMed  Google Scholar 

  52. Heyman B. The immune complex: possible ways of regulating the antibody response. Immunol Today 1990; 11: 310–313.

    Article  CAS  PubMed  Google Scholar 

  53. Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 1998; 16: 545–568.

    Article  CAS  PubMed  Google Scholar 

  54. Allen CD, Cyster JG. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 2008; 20: 14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Honda S, Kurita N, Miyamoto A, Cho Y, Usui K, Takeshita K et al. Enhanced humoral immune responses against T-independent antigens in Fc alpha/muR-deficient mice. Proc Natl Acad Sci USA 2009; 106: 11230–11235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M, Hiroyama T et al. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000; 1: 441–446.

    Article  CAS  PubMed  Google Scholar 

  57. Kojima A, Iwata K, Seya T, Matsumoto M, Ariga H, Atkinson JP et al. Membrane cofactor protein (CD46) protects cells predominantly from alternative complement pathway-mediated C3-fragment deposition and cytolysis. J Immunol 1993; 151: 1519–1527.

    CAS  PubMed  Google Scholar 

  58. Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984; 160: 1558–1578.

    Article  CAS  PubMed  Google Scholar 

  59. Miwa T, Song WC. Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Int Immunopharmacol 2001; 1: 445–459.

    Article  CAS  PubMed  Google Scholar 

  60. Rosenbloom AL. Obesity, insulin resistance, beta-cell autoimmunity, and the changing clinical epidemiology of childhood diabetes. Diabetes Care 2003; 26: 2954–2956.

    Article  PubMed  Google Scholar 

  61. Hersoug LG, Linneberg A. The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance? Allergy 2007; 62: 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  62. Cambuli VM, Incani M, Cossu E, Congiu T, Scano F, Pilia S et al. Prevalence of type 1 diabetes autoantibodies (GADA, IA2, and IAA) in overweight and obese children. Diabetes Care 2010; 33: 820–822.

    Article  PubMed  Google Scholar 

  63. Marzullo P, Minocci A, Tagliaferri MA, Guzzaloni G, Di Blasio A, De Medici C et al. Investigations of thyroid hormones and antibodies in obesity: leptin levels are associated with thyroid autoimmunity independent of bioanthropometric, hormonal, and weight-related determinants. J Clin Endocrinol Metab 2010; 95: 3965–3972.

    Article  CAS  PubMed  Google Scholar 

  64. Badaru A, Pihoker C. Type 2 diabetes in childhood: clinical characteristics and role of β-cell autoimmunity. Curr Diab Rep 2012; 12: 75–81.

    Article  CAS  PubMed  Google Scholar 

  65. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 2011; 217: 610–617.

    Article  Google Scholar 

  66. MacLennan IC, Gray D, Kumararatne DS, Bazin H. The lymphocytes of splenic marginal zones: a distinct B-cell lineage. Immunol Today 1982; 3: 305–307.

    Article  CAS  PubMed  Google Scholar 

  67. Lopes-Carvalho T, Kearney JF. Development and selection of marginal zone B cells. Immunol Rev 2004; 197: 192–205.

    Article  PubMed  Google Scholar 

  68. Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol 2005; 23: 161–196.

    Article  CAS  PubMed  Google Scholar 

  69. Oliver AM, Martin F, Kearney JF. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol 1999; 162: 7198–7207.

    CAS  PubMed  Google Scholar 

  70. Meyer-Bahlburg A, Bandaranayake AD, Andrews SF, Rawlings DJ. Reduced c-myc expression levels limit follicular mature B cell cycling in response to TLR signals. J Immunol 2009; 182: 4065–4075.

    Article  CAS  PubMed  Google Scholar 

  71. Li QZ, Xie C, Wu T, Mackay M, Aranow C, Putterman C et al. Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. J Clin Invest 2005; 115: 3428–3439.

    Article  PubMed  Google Scholar 

  72. Li QZ, Zhou J, Wandstrat AE, Carr-Johnson F, Branch V, Karp DR et al. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin Exp Immunol 2007; 147: 60–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li QZ, Zhou J, Lian Y, Zhang B, Branch VK, Carr-Johnson F et al. Interferon signature gene expression is correlated with autoantibody profiles in patients with incomplete lupus syndromes. Clin Exp Immunol 2010; 159: 281–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Underhill GH, Minges-Wols HA, Fornek JL, Witte PL, Kansas GS. IgG plasma cells display a unique spectrum of leukocyte adhesion and homing molecules. Blood 2002; 99: 2905–2912.

    Article  CAS  PubMed  Google Scholar 

  75. Halliwell RE. Autoimmune diseases in domestic animals. J Am Vet Med Assoc 1982; 181: 1088–1096.

    CAS  PubMed  Google Scholar 

  76. Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63: 967–1000.

    Article  PubMed  Google Scholar 

  77. Sanjurjo L, Aran G, Roher N, Valledor AF, Sarrias MR. AIM/CD5L: a key protein in the control of immune homeostasis and inflammatory disease. J Leukoc Biol 2015; 98: 173–184.

    Article  CAS  PubMed  Google Scholar 

  78. Miyazaki T, Kurokawa J, Arai S. AIMing at metabolic syndrome—towards the development of novel therapies for metabolic diseases via apoptosis inhibitor of macrophage (AIM). Circ J 2011; 75: 2522–2531.

    Article  CAS  PubMed  Google Scholar 

  79. Shuai Z, Wang J, Badamagunta M, Choi J, Yang G, Zhang W et al. The fingerprint of antimitochondrial antibodies and the etiology of primary biliary cholangitis. Hepatology 2017; 65: 1670–1682.

    Article  CAS  PubMed  Google Scholar 

  80. Hisamoto S, Shimoda S, Harada K, Iwasaka S, Onohara S, Chong Y et al. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun 2016; 75: 150–160.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by AMED-CREST, Japan Agency for Medical Research Development (to TM), a MEXT Grant-in-Aid for Scientific Research (S) Grant number 16H06389 (to TM) and (B) Grant number 16H05313 (to SA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miyazaki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, T., Yamazaki, T., Sugisawa, R. et al. AIM associated with the IgM pentamer: attackers on stand-by at aircraft carrier. Cell Mol Immunol 15, 563–574 (2018). https://doi.org/10.1038/cmi.2017.141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.141

This article is cited by

Search

Quick links