Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

RhoB regulates the function of macrophages in the hypoxia-induced inflammatory response

Abstract

Immune cells, particularly macrophages, play critical roles in the hypoxia-induced inflammatory response. The small GTPase RhoB is usually rapidly induced by a variety of stimuli and has been described as an important regulator of cytoskeletal organization and vesicle and membrane receptor trafficking. However, it is unknown whether RhoB is involved in the hypoxia-induced inflammatory response. Here, we investigated the effect of hypoxia on the expression of RhoB and the mechanism and significance of RhoB expression in macrophages. We found that hypoxia significantly upregulated the expression of RhoB in RAW264.7 cells, mouse peritoneal macrophages, and the spleen of rats. Hypoxia-induced expression of RhoB was significantly blocked by a specific inhibitor of hypoxia-inducible factor-1α (HIF-1α), c-Jun N-terminal kinase (JNK), or extracellular-signal regulated protein kinase (ERK), indicating that hypoxia-activated HIF-1α, JNK, and ERK are involved in the upregulation of RhoB by hypoxia. Knockdown of RhoB expression not only significantly suppressed basal production of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) in normoxia but also more markedly decreased the hypoxia-stimulated production of these cytokines. Furthermore, we showed that RhoB increased nuclear factor-kappa B (NF-κB) activity, and the inhibition of NF-κB transcriptional activity significantly decreased the RhoB-increased mRNA levels of IL-1β, IL-6, and TNF-α. Finally, we demonstrated that RhoB enhanced cell adhesion and inhibited cell migration in normoxia and hypoxia. Taken together, these results suggest that RhoB plays an important role in the hypoxia-induced activation of macrophages and the inflammatory response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Basnyat B, Murdoch DR . High-altitude illness. Lancet 2003; 361: 1967–1974.

    Article  Google Scholar 

  2. Ye J . Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond) 2009; 33: 54–66.

    Article  CAS  Google Scholar 

  3. Taylor CT, Colgan SP . Hypoxia and gastrointestinal disease. J Mol Med (Berl) 2007; 85: 1295–1300.

    Article  Google Scholar 

  4. Eltzschig HK, Carmeliet P . Hypoxia and inflammation. N Engl J Med 2011; 364: 656–665.

    Article  CAS  Google Scholar 

  5. Mills CD, Ley K . M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun 2014; 6: 716–726.

    Article  CAS  Google Scholar 

  6. Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A . Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int Immunol 2013; 25: 67–75.

    Article  CAS  Google Scholar 

  7. Safronova O, Pluemsampant S, Nakahama K, Morita I . Regulation of chemokine gene expression by hypoxia via cooperative activation of NF-kappaB and histone deacetylase. Int J Biochem Cell Biol 2009; 41: 2270–2280.

    Article  CAS  Google Scholar 

  8. Ramkhelawon B, Yang Y, van Gils JM, Hewing B, Rayner KJ, Parathath S et al. Hypoxia induces netrin-1 and Unc5b in atherosclerotic plaques: mechanism for macrophage retention and survival. Arterioscler Thromb Vasc Biol 2013; 33: 1180–1188.

    Article  CAS  Google Scholar 

  9. Folco EJ, Sukhova GK, Quillard T, Libby P . Moderate hypoxia potentiates interleukin-1beta production in activated human macrophages. Circ Res 2014; 115: 875–883.

    Article  CAS  Google Scholar 

  10. Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology 2008; 213: 733–749.

    Article  CAS  Google Scholar 

  11. Hempel SL, Monick MM, Hunninghake GW . Effect of hypoxia on release of IL-1 and TNF by human alveolar macrophages. Am J Respir Cell Mol Biol 1996; 14: 170–176.

    Article  CAS  Google Scholar 

  12. Murdoch C, Muthana M, Lewis CE . Hypoxia regulates macrophage functions in inflammation. J Immunol 2005; 175: 6257–6263.

    Article  CAS  Google Scholar 

  13. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008; 453: 807–811.

    Article  CAS  Google Scholar 

  14. Taylor CT . Interdependent roles for hypoxia inducible factor and nuclear factor-kappa B in hypoxic inflammation. J Physiol 2008; 586: 4055–4059.

    Article  CAS  Google Scholar 

  15. Vallabhapurapu S, Karin M . Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693–733.

    Article  CAS  Google Scholar 

  16. Lebowitz PF, Prendergast GC . Functional interaction between RhoB and the transcription factor DB1. Cell Adhes Commun 1998; 6: 277–287.

    Article  CAS  Google Scholar 

  17. Wherlock M, Gampel A, Futter C, Mellor H . Farnesyltransferase inhibitors disrupt EGF receptor traffic through modulation of the RhoB GTPase. J Cell Sci 2004; 117: 3221–3231.

    Article  CAS  Google Scholar 

  18. Gerald D, Adini I, Shechter S, Perruzzi C, Varnau J, Hopkins B et al. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nat Commun 2013; 4: 2824.

    Article  Google Scholar 

  19. Vasilaki E, Papadimitriou E, Tajadura V, Ridley AJ, Stournaras C, Kardassis D . Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways. FASEB J 2010; 24: 891–905.

    Article  CAS  Google Scholar 

  20. Jaffe AB, Hall A . Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21: 247–269.

    Article  CAS  Google Scholar 

  21. Kroon J, Tol S, van Amstel S, Elias JA, Fernandez-Borja M . The small GTPase RhoB regulates TNFα signaling in endothelial cells. PLoS One 2013; 8: e75031.

    Article  CAS  Google Scholar 

  22. Huang M, Duhadaway JB, Prendergast GC, Laury-Kleintop LD . RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2007; 27: 2597–2605.

    Article  CAS  Google Scholar 

  23. Fritz G, Kaina B . Transcriptional activation of the small GTPase gene RhoB by genotoxic stress is regulated via a CCAAT element. Nucleic Acids Res 2001; 29: 792–798.

    Article  CAS  Google Scholar 

  24. Fritz G, Kaina B, Aktories K . The ras-related small GTP-binding protein RhoB is immediate-early inducible by DNA damaging treatments. J Biol Chem 1995; 270: 25172–25177.

    Article  CAS  Google Scholar 

  25. Jahner D, Hunter T . The ras-related gene RhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol Cell Biol 1991; 11: 3682–3690.

    Article  CAS  Google Scholar 

  26. Wojciak-Stothard B, Zhao L, Oliver E, Dubois O, Wu Y, Kardassis D et al. Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 2012; 110: 1423–1434.

    Article  CAS  Google Scholar 

  27. Turcotte S, Desrosiers RR, Beliveau R . HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 2003; 116: 2247–2260.

    Article  CAS  Google Scholar 

  28. Skuli N, Monferran S, Delmas C, Lajoie-Mazenc I, Favre G, Toulas C et al. Activation of RhoB by hypoxia controls hypoxia-inducible factor-1alpha stabilization through glycogen synthase kinase-3 in U87 glioblastoma cells. Cancer Res 2006; 66: 482–489.

    Article  CAS  Google Scholar 

  29. Bravo-Nuevo A, O’Donnell R, Rosendahl A, Chung JH, Benjamin LE, Odaka C . RhoB deficiency in thymic medullary epithelium leads to early thymic atrophy. Int Immunol 2011; 23: 593–600.

    Article  CAS  Google Scholar 

  30. Wheeler AP, Ridley AJ . RhoB affects macrophage adhesion, integrin expression and migration. Exp Cell Res 2007; 313: 3505–3516.

    Article  CAS  Google Scholar 

  31. Kamon H, Kawabe T, Kitamura H, Lee J, Kamimura D, Kaisho T et al. TRIF-GEFH1-RhoB pathway is involved in MHCII expression on dendritic cells that is critical for CD4 T-cell activation. EMBO J 2006; 25: 4108–4119.

    Article  CAS  Google Scholar 

  32. Wang XH, Wang Y, Diao F, Lu J . RhoB is involved in lipopolysaccharide-induced inflammation in mouse in vivo and in vitro. J Physiol Biochem 2013; 69: 189–197.

    Article  CAS  Google Scholar 

  33. Wang Y, Ma YY, Song XL, Cai HY, Chen JC, Song LN et al. Upregulations of glucocorticoid-induced leucine zipper by hypoxia and glucocorticoid inhibit proinflammatory cytokines under hypoxic conditions in macrophages. J Immunol 2012; 188: 222–229.

    Article  CAS  Google Scholar 

  34. Luan H, Zhang Q, Wang L, Wang C, Zhang M, Xu X et al. OM85-BV induced the productions of IL-1beta, IL-6, and TNF-alpha via TLR4- and TLR2-mediated ERK1/2/NF-kappaB pathway in RAW264.7 cells. J Interferon Cytokine Res 2014; 34: 526–536.

    Article  CAS  Google Scholar 

  35. Prendergast GC . Actin’ up: RhoB in cancer and apoptosis. Nat Rev Cancer 2001; 1: 162–168.

    Article  CAS  Google Scholar 

  36. Xu H, An H, Yu Y, Zhang M, Qi R, Cao X . Ras participates in CpG oligodeoxynucleotide signaling through association with toll-like receptor 9 and promotion of interleukin-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor 6 complex formation in macrophages. J Biol Chem 2003; 278: 36334–36340.

    Article  CAS  Google Scholar 

  37. Brisseau GF, Grinstein S, Hackam DJ, Nordstrom T, Manolson MF, Khine AA et al. Interleukin-1 increases vacuolar-type H+-ATPase activity in murine peritoneal macrophages. J Biol Chem 1996; 271: 2005–2011.

    Article  CAS  Google Scholar 

  38. Vivona ML, Matthay M, Chabaud MB, Friedlander G, Clerici C . Hypoxia reduces alveolar epithelial sodium and fluid transport in rats: reversal by beta-adrenergic agonist treatment. Am J Respir Cell Mol Biol 2001; 25: 554–561.

    Article  CAS  Google Scholar 

  39. Chen YX, Wang Y, Fu CC, Diao F, Song LN, Li ZB et al. Dexamethasone enhances cell resistance to chemotherapy by increasing adhesion to extracellular matrix in human ovarian cancer cells. Endocr Relat Cancer 2010; 17: 39–50.

    Article  CAS  Google Scholar 

  40. Bronte V, Pittet MJ . The spleen in local and systemic regulation of immunity. Immunity 2013; 39: 806–818.

    Article  CAS  Google Scholar 

  41. Zagorska A, Dulak J . HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim Pol 2004; 51: 563–585.

    CAS  PubMed  Google Scholar 

  42. Minet E, Arnould T, Michel G, Roland I, Mottet D, Raes M et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 2000; 468: 53–58.

    Article  CAS  Google Scholar 

  43. Muller JM, Krauss B, Kaltschmidt C, Baeuerle PA, Rupec RA . Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem 1997; 272: 23435–23439.

    Article  CAS  Google Scholar 

  44. Guma M, Rius J, Duong-Polk KX, Haddad GG, Lindsey JD, Karin M . Genetic and pharmacological inhibition of JNK ameliorates hypoxia-induced retinopathy through interference with VEGF expression. Proc Natl Acad Sci USA 2009; 106: 8760–8765.

    Article  CAS  Google Scholar 

  45. Anand RJ, Gribar SC, Li J, Kohler JW, Branca MF, Dubowski T et al. Hypoxia causes an increase in phagocytosis by macrophages in a HIF-1alpha-dependent manner. J Leukoc Biol 2007; 82: 1257–1265.

    Article  CAS  Google Scholar 

  46. Fritz G, Kaina B . RhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. J Biol Chem 1997; 272: 30637–30644.

    Article  CAS  Google Scholar 

  47. Li YD, Liu YP, Cao DM, Yan YM, Hou YN, Zhao JY et al. Induction of small G protein RhoB by non-genotoxic stress inhibits apoptosis and activates NF-kappaB. J Cell Physiol 2011; 226: 729–738.

    Article  CAS  Google Scholar 

  48. Chen YX, Li ZB, Diao F, Cao DM, Fu CC, Lu J . Up-regulation of RhoB by glucocorticoids and its effects on the cell proliferation and NF-kappaB transcriptional activity. J Steroid Biochem Mol Biol 2006; 101: 179–187.

    Article  CAS  Google Scholar 

  49. Rodriguez PL, Sahay S, Olabisi OO, Whitehead IP . ROCK I-mediated activation of NF-kappaB by RhoB. Cell Signal 2007; 19: 2361–2369.

    Article  CAS  Google Scholar 

  50. Skuli N, Monferran S, Delmas C, Favre G, Bonnet J, Toulas C et al. Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 2009; 69: 3308–3316.

    Article  CAS  Google Scholar 

  51. Grimshaw MJ, Balkwill FR . Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation – a potential mechanism. Eur J Immunol 2001; 31: 480–489.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Basic Research Program “973” (2006CB504100). We would like to thank Prof. Wei-gang Xu (Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China) for providing the hypoxia chamber for rats and the anaerobic system for cells. We would also like to thank Prof. Liang-Nian Song (Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA) for providing the English editing in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lu.

Ethics declarations

Competing interests

The authors have no financial conflicts of interest.

Additional information

Supplementary information of this article can be found on the Cellular & Molecular Immunology’s website (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Su, J., Zhang, M. et al. RhoB regulates the function of macrophages in the hypoxia-induced inflammatory response. Cell Mol Immunol 14, 265–275 (2017). https://doi.org/10.1038/cmi.2015.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.78

Keywords

This article is cited by

Search

Quick links