Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD

Abstract

Protein transduction domains (PTDs) are small peptides that facilitate the transduction of large molecules such as polyproteins, DNA and viruses into a eukaryotic cell. Here, we demonstrated that a novel PTD (HP4) derived from herring protamine appeared to enter C6Bu1 rat glioma cell lines more rapidly than other known PTDs such as Tat, Antp and Hph-1. Moreover, HP4 significantly enhanced in vitro transduction of recombinant adenoviruses (rAds) into various cancer cell lines, mesenchymal stem cells (MSCs) and dendritic cells, which are relatively resistant to rAd infection. Enhancement of rAd delivery into C6Bu1 and MSCs by HP4 is 20 and 7 times higher than that by Tat, respectively. The increase in the expression of rAd encoding IL-12N220L by HP4 is proportional to its antitumor effect in the ex vivo transduced mouse colon cancer model. Thus, these results suggest that HP4 could be utilized to improve the transduction efficiency of rAd, resulting in enhanced efficacy of rAd-mediated gene therapy, especially for ex vivo-transduced cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Green M, Loewenstein PM . Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179–1188.

    Article  CAS  PubMed  Google Scholar 

  2. Vives E, Brodin P, Lebleu B . A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997; 272: 16010–16017.

    Article  CAS  PubMed  Google Scholar 

  3. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF . In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  4. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A . Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996; 271: 18188–18193.

    Article  CAS  PubMed  Google Scholar 

  5. Choi JM, Ahn MH, Chae WJ, Jung YG, Park JC, Song HM et al. Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat Med 2006; 12: 574–579.

    Article  CAS  PubMed  Google Scholar 

  6. Phelan A, Elliott G, O'Hare P . Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998; 16: 440–443.

    Article  CAS  PubMed  Google Scholar 

  7. Derossi D, Joliot AH, Chassaing G, Prochiantz A . The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444–10450.

    CAS  PubMed  Google Scholar 

  8. Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y . Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 2002; 277: 2437–2443.

    Article  CAS  PubMed  Google Scholar 

  9. Fittipaldi A, Ferrari A, Zoppé M, Arcangeli C, Pellegrini V, Beltram F et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 2003; 278: 34141–34149.

    Article  CAS  PubMed  Google Scholar 

  10. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003; 278: 585–590.

    Article  CAS  PubMed  Google Scholar 

  11. Snyder EL, Saenz CC, Denicourt C, Meade BR, Cui XS, Kaplan IM et al. Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides. Cancer Res 2005; 65: 10646–10650.

    Article  CAS  PubMed  Google Scholar 

  12. Mai JC, Mi Z, Kim SH, Ng B, Robbins PD . A proapoptotic peptide for the treatment of solid tumors. Cancer Res 2001; 61: 7709–7712.

    CAS  PubMed  Google Scholar 

  13. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2 L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    Article  CAS  PubMed  Google Scholar 

  14. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 2000; 6: 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  15. Emi N, Kidoaki S, Yoshikawa K, Saito H . Gene transfer mediated by polyarginine requires a formation of big carrier-complex of DNA aggregate. Biochem Biophys Res Commun 1997; 231: 421–424.

    Article  CAS  PubMed  Google Scholar 

  16. Snyder EL, Dowdy SF . Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr Opin Mol Ther 2001; 3: 147–152.

    CAS  PubMed  Google Scholar 

  17. Tung CH, Mueller S, Weissleder R . Novel branching membrane translocational peptide as gene delivery vector. Bioorg Med Chem 2002; 10: 3609–3614.

    Article  CAS  PubMed  Google Scholar 

  18. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura T, Sato K, Hamada H . Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors. Hum Gene Ther 2002; 13: 613–626.

    Article  CAS  PubMed  Google Scholar 

  20. Yun CO, Cho EA, Song JJ, Kang DB, Kim E, Sohn JH et al. dl-VSVG-LacZ, a vesicular stomatitis virus glycoprotein epitope-incorporated adenovirus, exhibits marked enhancement in gene transduction efficiency. Hum Gene Ther 2003; 14: 1643–1652.

    Article  CAS  PubMed  Google Scholar 

  21. Byk T, Haddada H, Vainchenker W, Louache F . Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells. Hum Gene Ther 1998; 9: 2493–2502.

    Article  CAS  PubMed  Google Scholar 

  22. Lee SG, Yoon SJ, Kim CD, Kim K, Lim DS, Yeom YI et al. Enhancement of adenoviral transduction with polycationic liposomes in vivo. Cancer Gene Ther 2000; 7: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  23. Toyoda K, Nakane H, Heistad DD . Cationic polymer and lipids augment adenovirus-mediated gene transfer to cerebral arteries in vivo. J Cereb Blood Flow Metab 2001; 21: 1125–1131.

    Article  CAS  PubMed  Google Scholar 

  24. Gratton JP, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R et al. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med 2003; 9: 357–362.

    Article  CAS  PubMed  Google Scholar 

  25. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  26. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sorgi FL, Bhattacharya S, Huang L . Protamine sulfate enhances lipid-mediated gene transfer. Gene Therapy 1997; 4: 961–968.

    Article  CAS  PubMed  Google Scholar 

  28. Lanuti M, Kouri CE, Force S, Chang M, Amin K, Xu K et al. Use of protamine to augment adenovirus-mediated cancer gene therapy. Gene Therapy 1999; 6: 1600–1610.

    Article  CAS  PubMed  Google Scholar 

  29. Tsuchiya Y . Characterization of protamine as a transfection accelerator for gene delivery. J Bioact Compat Polym 2006; 21: 519 - 537.

    Article  CAS  Google Scholar 

  30. Park YJ, Chang LC, Liang JF, Moon C, Chung CP, Yang VC . Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB J 2005; 19: 1555–1557.

    Article  CAS  PubMed  Google Scholar 

  31. Schaffler A, Buchler C . Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25: 818–827.

    Article  PubMed  Google Scholar 

  32. Leong DT, Hutmacher DW, Chew FT, Lim TC . Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. J Dermatol Sci 2005; 37: 169–176.

    Article  PubMed  Google Scholar 

  33. Ha SJ, Chang J, Song MK, Suh YS, Jin HT, Lee CH et al. Engineering N-glycosylation mutations in IL-12 enhances sustained cytotoxic T lymphocyte responses for DNA immunization. Nat Biotechnol 2002; 20: 381–386.

    Article  PubMed  Google Scholar 

  34. Ha SJ, Park SH, Kim HJ, Kim SC, Kang HJ, Lee EG et al. Enhanced immunogenicity and protective efficacy with the use of interleukin-12-encapsulated microspheres plus AS01B in tuberculosis subunit vaccination. Infect Immun 2006; 74: 4954–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin HT, Youn JI, Kim HJ, Lee JB, Ha SJ, Koh JS et al. Enhancement of interleukin-12 gene-based tumor immunotherapy by the reduced secretion of p40 subunit and the combination with farnesyltransferase inhibitor. Hum Gene Ther 2005; 16: 328–338.

    Article  CAS  PubMed  Google Scholar 

  36. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB . The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 2000; 97: 13003–13008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001; 276: 5836–5840.

    Article  CAS  PubMed  Google Scholar 

  38. Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF et al. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 2001; 61: 474–477.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Sang-Jun Ha for helpful discussion, Dr Yoon-Sun Yang for the human UCB-MSCs and Sang-Chun Lee and Kwan-Suk Lee for devoted animal care. This research was supported by Generic Technology Development Program, Minister of Commerce, Industry and Energy (10020817), Technology Innovation Development Program, SMEs (Small and Medium enterprises) (S0703222-C1449600-10000011), the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (no. M10534050001-08N3405-00110) and a grant from Biod, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-C Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youn, JI., Park, SH., Jin, HT. et al. Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD. Cancer Gene Ther 15, 703–712 (2008). https://doi.org/10.1038/cgt.2008.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.45

Keywords

This article is cited by

Search

Quick links