Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck

Abstract

Considering that mycobacterial heat-shock protein 65 (hsp65) gene transfer can elicit a profound antitumoral effect, this study aimed to establish the safety, maximum-tolerated dose (MTD) and preliminary efficacy of DNA-hsp65 immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). For this purpose, 21 patients with unresectable and recurrent HNSCC were studied. Each patient received three ultrasound-guided injections at 21-day intervals of: 150, 600 or 400 μg of DNA-hsp65. Toxicity was graded according to CTCAE directions. Tumor volume was measured before and after treatment using computed tomography scan. The evaluation included tumor mass variation, delayed-type hypersensitivity response and spontaneous peripheral blood mononuclear cell proliferation before and after treatment. The MTD was 400 μg per dose. DNA-hsp65 immunotherapy was well tolerated with moderate pain, edema and infections as the most frequent adverse effects. None of the patients showed clinical or laboratory alterations compatible with autoimmune reactions. Partial response was observed in 4 out of 14 patients who completed treatment, 2 of which are still alive more than 3 years after the completion of the trial. Therefore, DNA-hsp65 immunotherapy is a feasible and safe approach at the dose of 400 μg per injection in patients with HNSCC refractory to standard treatment. Further studies in a larger number of patients are needed to confirm the efficacy of this novel strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Vokes EE, Weichselbaum RR, Lippman SM, Hong WK . Head and neck cancer. N Engl J Med 1993; 328: 184–194.

    Article  CAS  Google Scholar 

  2. Ku TK, Nguyen DC, Karaman M, Gill P, Hacia JG, Crowe GL . Loss of p53 expression correlates with metastatic phenotype and transcriptional profile in a new mouse model of head and neck cancer. Mol Cancer Res 2007; 5: 351–362.

    Article  CAS  Google Scholar 

  3. Amar A, Franzi SA, Rapoport A . Evolution of patients with squamous cell carcinoma of upper aerodigestive tract. Sao Paulo Med J 2003; 121: 155–158.

    Article  Google Scholar 

  4. Winquist E, Oliver T, Gilbert R . Postoperative chemoradiotherapy for advanced squamous cell carcinoma of the head and neck: a systematic review with meta-analysis. Head Neck 2007; 29: 38–46.

    Article  Google Scholar 

  5. Siu LL, Soulieres D, Chen EX, Pond GR, Chin SF, Francis P et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital phase II consortium and National Cancer Institute of Canada Clinical Trials Group Study. J Clin Oncol 2007; 25: 2178–2183.

    Article  CAS  Google Scholar 

  6. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M . Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 2007; 2: 232–240.

    Google Scholar 

  7. Robbins KT, Storniolo AM, Kerber C, Vicario D, Seagren S, Shea M et al. Phase I study of highly selective supradose cisplatin infusions for advanced head and neck cancer. J Clin Oncol 1994; 12: 2113–2120.

    Article  CAS  Google Scholar 

  8. Whiteside TL, Letessier E, Hirabayashi H, Vitolo D, Bryant J, Barnes L et al. Evidence for local and systemic activation of immune cells by peritumoral injections of interleukin 2 in patients with advanced squamous cell carcinoma of the head and neck. Cancer Res 1993; 53: 5654–5662.

    CAS  PubMed  Google Scholar 

  9. Shin DM, Glisson BS, Khuri FR, Clifford JL, Clayman G, Benner SE et al. Phase II and biologic study of interferon alfa, retinoic acid, and cisplatin in advanced squamous skin cancer. J Clin Oncol 2002; 20: 364–370.

    Article  CAS  Google Scholar 

  10. Herold-Mende C, Karcher J, Dyckhoff G, Schirrmacher V . Antitumor immunization of head and neck squamous cell carcinoma patients with a virus-modified autologous tumor cell vaccine. Adv Otorhinolaryngol 2005; 62: 173–183.

    PubMed  Google Scholar 

  11. Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001; 19: 289–298.

    Article  CAS  Google Scholar 

  12. Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M et al. Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 2004; 53: 227–233.

    Article  CAS  Google Scholar 

  13. Binder RJ . Heat shock protein vaccines: from bench to bedside. Int Rev Immunol 2006; 25: 353–375.

    Article  CAS  Google Scholar 

  14. Prohaszka Z . Chaperones as part of immune networks. Adv Exp Med Biol 2007; 594: 159–166.

    Article  Google Scholar 

  15. Menoret A, Peng P, Srivastava PK . Association of peptides with heat shock protein gp96 occurs in vivo and not after cell lysis. Biochem Biophys Res Commun 1999; 262: 813–818.

    Article  CAS  Google Scholar 

  16. Paz P, Brouwenstijn N, Perry R, Shastri N . Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 1999; 11: 241–251.

    Article  CAS  Google Scholar 

  17. Kunisawa J, Shastri N . The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. Mol Cell 2003; 12: 565–576.

    Article  CAS  Google Scholar 

  18. Portaro FC, Hayashi MA, De Arauz LJ, Palma MS, Assakura MT, Silva CL et al. The Mycobacterium leprae hsp65 displays proteolytic activity. Mutagenesis studies indicate that the M.leprae hsp65 proteolytic activity is catalytically related to the HslVU protease. Biochemistry 2002; 41: 7400–7406.

    Article  CAS  Google Scholar 

  19. Srivastava P . Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002; 2: 185–194.

    Article  CAS  Google Scholar 

  20. Binder RJ, Srivastava PK . Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 2005; 6: 593–599.

    Article  CAS  Google Scholar 

  21. Segal BH, Wang XY, Dennis CG, Youn R, Repasky EA, Manjili MH et al. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov Today 2006; 11: 534–540.

    Article  CAS  Google Scholar 

  22. Chen X, Tao Q, Yu H, Zhang L, Kao X . Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 2002; 84: 81–87.

    Article  CAS  Google Scholar 

  23. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Kärre K, Söderström K . A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 2002; 196: 1403–1414.

    Article  CAS  Google Scholar 

  24. Lowrie DB, Silva CL, Colston MJ, Ragno S, Tascon RE . Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 1997; 15: 834–838.

    Article  CAS  Google Scholar 

  25. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 1999; 400: 269–271.

    Article  CAS  Google Scholar 

  26. Bonato VL, Goncalves ED, Soares EG, Santos Júnior RR, Sartori A, Coelho-Castelo AA et al. Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis: activation of CD8+ cells, interferon-gamma recovery and reduction of lung injury. Immunology 2004; 113: 130–138.

    Article  CAS  Google Scholar 

  27. Silva CL, Bonato VL, Coelho-Castelo AA, De Souza AO, Santos SA, Lima KM et al. Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Therapy 2005; 12: 281–287.

    Article  CAS  Google Scholar 

  28. Lukacs KV, Lowrie DB, Stokes RW, Colston MJ . Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 1993; 178: 343–348.

    Article  CAS  Google Scholar 

  29. Yi H, Rong Y, Yankai Z, Wentao L, Hongxia Z, Jie W et al. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine 2006; 24: 2575–2584.

    Article  Google Scholar 

  30. Nuermberger E, Tyagi S, Williams KN, Rosenthal I, Bishai WR, Grosset JH . Rifapentine, moxifloxacin, or DNA vaccine improves treatment of latent tuberculosis in a mouse model. Am J Respir Crit Care Med 2005; 172: 1452–1456.

    Article  Google Scholar 

  31. Tuomela M, Stanescu I, Krohn K . Validation overview of bio-analytical methods. Gene Therapy 2005; 12 (Suppl 1): S131–S138.

    Article  CAS  Google Scholar 

  32. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92: 205–216.

    Article  CAS  Google Scholar 

  33. Todryk SM, Melcher AA, Dalgleish AG, Vile RG . Heat shock proteins refine the danger theory. Immunology 2000; 99: 334–337.

    Article  CAS  Google Scholar 

  34. Lima KM, dos Santos SA, Santos RR, Brandão IT, Rodrigues Jr JM, Silva CL . Efficacy of DNA-hsp65 vaccination for tuberculosis varies with method of DNA introduction in vivo. Vaccine 2003; 22: 49–56.

    Article  CAS  Google Scholar 

  35. Lowrie DB . DNA vaccines for therapy of tuberculosis: where are we now? Vaccine 2006; 24: 1983–1989.

    Article  CAS  Google Scholar 

  36. Kaufmann SH, Vath U, Thole JE, Van Embden JD, Emmrich F . Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur J Immunol 1987; 17: 351–357.

    Article  CAS  Google Scholar 

  37. Cross D, Burmester JK . Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4: 218–227.

    Article  CAS  Google Scholar 

  38. Vattemi E, Claudio PP . Adenoviral gene therapy in head and neck cancer. Drug News Perspect 2006; 19: 329–337.

    Article  CAS  Google Scholar 

  39. Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol 2000; 38: 208–217.

    Article  CAS  Google Scholar 

  40. Victora G, Socorro-Silva A, Volsi E, Abdallah K, Lima F, Michaluart P et al. Immune response to vaccination with DNA-hsp65 in head and neck cancer patients. Submitted.

Download references

Acknowledgements

We would like to thank Roger Chammas for his useful advice during the planning of the trial, Dr José Maciel Rodrigues Jr and Dr Karla Lima for their help in vaccine production. This work was supported by grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FINEP (Financiadora de Estudos e Projetos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C L Silva.

Additional information

Author contributions

Conception and design: Celio L Silva, Pedro Michaluart, Kald Abdallah, Verônica Coelho.

Administrative support: Celio L Silva and Pedro Michaluart.

Provision of study materials or patients: Celio L Silva, Pedro Michaluart, Kald Abdallah, Raquel A Moysés, Fanny D Lima, Rodney B Smith and Maria Cristina Chammas.

Collection and assembly of data: Pedro Michaluart, Kald Abdallah, Fanny D Lima, Rodney B Smith, Raquel A Moysés, Verônica Coelho, Gabriel D Victora, Jorge Kalil, Alberto R Ferraz, Ana K Barreto, Maria Cristina Chammas, Regina LE Gomes, Eloisa Gebrim, Lica Arakawa-Sugueno, Kariane P Fernandes, Paulo A Lotufo and Maria Regina Cardoso.

Data analysis and interpretation: Pedro Michaluart, Kald Abdallah, Fanny D Lima, Rodney B Smith, Raquel A Moysés, Verônica Coelho, Gabriel D Victora, Adalberto Socorro-Silva, Evelyn C Volsi, Jorge Kalil, Carlos R Zárate-Bladés, Alberto R Ferraz, Ana K Barreto, Regina LE Gomes, Eloisa Gebrim, Lica Arakawa-Sugueno, Kariane P Fernandes, Paulo A Lotufo, Maria Regina Cardoso and Celio L Silva.

Manuscript writing: Celio L Silva, Pedro Michaluart, Verônica Coelho, Carlos R Zárate-Bladés, Gabriel D Victora, Fanny D Lima, Rodney B Smith and Maria Regina Cardoso.

Finnal approval of manuscript: Pedro Michaluart, Kald Abdallah, Fanny D Lima, Rodney B Smith, Raquel A Moysés, Verônica Coelho, Gabriel D Victora, Adalberto Socorro-Silva, Evelyn C Volsi, Jorge Kalil, Carlos R Zárate-Bladés, Alberto R Ferraz, Ana K Barreto, Maria Cristina Chammas, Regina LE Gomes, Eloisa Gebrim, Lica Arakawa-Sugueno, Kariane P Fernandes, Paulo A Lotufo, Maria Regina Cardoso and Celio L Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaluart, P., Abdallah, K., Lima, F. et al. Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck. Cancer Gene Ther 15, 676–684 (2008). https://doi.org/10.1038/cgt.2008.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.35

Keywords

This article is cited by

Search

Quick links