Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Primary neural stem/progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma

A Corrigendum to this article was published on 14 May 2009

Abstract

Despite recent technical improvements in surgical excision techniques and adjuvant radio- and chemotherapy, the clinical outcome of patients with grade IV astrocytoma (glioblastoma) remains very poor, with a median survival of less than 12 months. A promising approach to therapy employs gene-engineered neural stem/progenitor cells (NSCs) as a cellular therapeutic delivery system, to track glioblastoma cells and deliver anticancer molecules. However, most results on their tumor tropism have been derived by immortalized NSCs. We now report that primary murine gene-engineered NSCs displayed in vivo tropism for glioblastoma cells. Ten days after injection into the brain, many NSCs continued to express the transgene and the NSC marker, nestin. NSCs transduced with a retroviral vector co-expressing a secretable form of human endostatin and eGFP (NSC/endo-eGFP) released potentially antiangiogenetic concentrations of endostatin into the culture medium. Conditioned medium of NSC/endo-eGFP cells inhibited the growth of mouse pulmonary microvascular endothelial cells (PMVECs). A good correlation between endostatin levels and PMVEC growth inhibition was observed. In NSCs co-expressing cytochrome P450 2B6 (CYP2B6) and eGFP (NSC/CYP2B6-eGFP), the forced expression of CYP2B6 resulted in intracellular activation of CPA and subsequent cell death. In the presence of NSC/CYP2B6-eGFP, we observed CPA cytotoxicity to DsRed-expressing U87Mg glioma cells. In vivo treatment of intracranial GL-261 glioblastoma with NSC/endo-eGFP caused a 65% reduction in tumor size, compared to untreated control mice or mice treated with NSC/eGFP cells. Our data suggest that primary NSCs transduced with retroviral vectors expressing endostatin and/or CYP2B6 have a potential role in glioblastoma therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rich JN, Bigner DD . Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 2004; 3: 430–446.

    Article  CAS  PubMed  Google Scholar 

  2. Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 2003; 14: 1777–1785.

    Article  CAS  PubMed  Google Scholar 

  3. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McKay R . Stem cells in the central nervous system. Science 1997; 276: 66–71.

    Article  CAS  PubMed  Google Scholar 

  5. Snyder EY, Taylor RM, Wolfe JH . Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 1995; 374: 367–370.

    Article  CAS  PubMed  Google Scholar 

  6. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6: 447–450.

    Article  CAS  PubMed  Google Scholar 

  7. Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res 2007; 67: 22–25.

    Article  CAS  PubMed  Google Scholar 

  8. Mi R, Luo Y, Cai J, Limke TL, Rao MS, Hoke A . Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors. Exp Neurol 2005; 194: 301–319.

    Article  CAS  PubMed  Google Scholar 

  9. Rappa G, Kunke D, Holter J, Diep DB, Meyer J, Baum C et al. Efficient expansion and gene transduction of mouse neural stem/progenitor cells on recombinant fibronectin. Neuroscience 2004; 124: 823–830.

    Article  CAS  PubMed  Google Scholar 

  10. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA . Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 1996; 2: 876–882.

    Article  CAS  PubMed  Google Scholar 

  11. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM . Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 1998; 58: 4654–4659.

    CAS  PubMed  Google Scholar 

  12. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001; 61: 6624–6628.

    CAS  PubMed  Google Scholar 

  13. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  PubMed  Google Scholar 

  14. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol 2001; 19: 35–39.

    Article  CAS  PubMed  Google Scholar 

  15. Kim YM, Jang JW, Lee OH, Yeon J, Choi EY, Kim KW et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 2000; 60: 5410–5413.

    CAS  PubMed  Google Scholar 

  16. Dkhissi F, Lu H, Soria C, Opolon P, Griscelli F, Liu H et al. Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum Gene Ther 2003; 14: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  17. Strik HM, Schluesener HJ, Seid K, Meyermann R, Deininger MH . Localization of endostatin in rat and human gliomas. Cancer 2001; 91: 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  18. Ryan DP, Penson RT, Ahmed S, Chabner BA, Lynch Jr TJ . Reality testing in cancer treatment: the phase I trial of endostatin. Oncologist 1999; 4: 501–508.

    CAS  PubMed  Google Scholar 

  19. Folkman J . Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res 2006; 312: 594–607.

    Article  CAS  PubMed  Google Scholar 

  20. Turpeinen M, Raunio H, Pelkonen O . The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 2006; 7: 705–714.

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Waxman DJ . Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer. Curr Pharm Des 2002; 8: 1405–1416.

    Article  CAS  PubMed  Google Scholar 

  22. Pope IM, Poston GJ, Kinsella AR . The role of the bystander effect in suicide gene therapy. Eur J Cancer 1997; 33: 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  23. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy. J Clin Invest 2000; 105: 1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Machon O, van den Bout CJ, Backman M, Rosok O, Caubit X, Fromm SH et al. Forebrain-specific promoter/enhancer D6 derived from the mouse Dach1 gene controls expression in neural stem cells. Neuroscience 2002; 112: 951–966.

    Article  CAS  PubMed  Google Scholar 

  25. Lorico A, Rappa G, Finch RA, Yang D, Flavell RA, Sartorelli AC . Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res 1997; 57: 5238–5242.

    CAS  PubMed  Google Scholar 

  26. Hildinger M, Abel KL, Ostertag W, Baum C . Design of 5′ untranslated sequences in retroviral vectors developed for medical use. J Virol 1999; 73: 4083–4089.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hildinger M, Fehse B, Hegewisch-Becker S, John J, Rafferty JR, Ostertag W et al. Dominant selection of hematopoietic progenitor cells with retroviral MDR1 co-expression vectors. Hum Gene Ther 1998; 9: 33–42.

    Article  CAS  PubMed  Google Scholar 

  28. Baum C, Hegewisch-Becker S, Eckert HG, Stocking C, Ostertag W . Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol 1995; 69: 7541–7547.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cory JG, Cory AH, Lorico A, Rappa G, Sartorelli AC . Altered efflux properties of mouse leukemia L1210 cells resistant to 4- methyl-5-amino-1-formylisoquinoline thiosemicarbazone. Anticancer Res 1997; 17 (5A): 3185–3193.

    CAS  PubMed  Google Scholar 

  30. Rappa G, Gamcsik MP, Mitina RL, Baum C, Fodstad O, Lorico A . Retroviral transfer of MRP1 and gamma-glutamyl cysteine synthetase modulates cell sensitivity to L-buthionine-S, R-sulphoximine (BSO): new rationale for the use of BSO in cancer therapy. Eur J Cancer 2003; 39: 120–128.

    Article  CAS  PubMed  Google Scholar 

  31. Jounaidi Y, Hecht JE, Waxman DJ . Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res 1998; 58: 4391–4401.

    CAS  PubMed  Google Scholar 

  32. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  33. Yang M, Luiken G, Baranov E, Hoffman RM . Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques 2005; 39: 170, 172.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt NO, Ziu M, Carrabba G, Giussani C, Bello L, Sun Y et al. Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model. Clin Cancer Res 2004; 10: 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  35. King J, Hamil T, Creighton J, Wu S, Bhat P, McDonald F et al. Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 2004; 67: 139–151.

    Article  CAS  PubMed  Google Scholar 

  36. Lorico A, Bratbak D, Meyer J, Kunke D, Krauss S, Plott WE et al. Gamma-glutamylcysteine synthetase and L-buthionine-(S, R)-sulfoximine: a new selection strategy for gene-transduced neural and hematopoietic stem/progenitor cells. Hum Gene Ther 2005; 16: 711–724.

    Article  CAS  PubMed  Google Scholar 

  37. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  38. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  39. Cavazzana-Calvo M, Thrasher A, Mavilio F . The future of gene therapy. Nature 2004; 427: 779–781.

    Article  CAS  PubMed  Google Scholar 

  40. Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 1999; 17: 343–348.

    Article  CAS  PubMed  Google Scholar 

  41. Chen QR, Kumar D, Stass SA, Mixson AJ . Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308–3312.

    CAS  PubMed  Google Scholar 

  42. Feldman AL, Restifo NP, Alexander HR, Bartlett DL, Hwu P, Seth P et al. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000; 60: 1503–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL . Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci USA 2000; 97: 4802–4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen CT, Lin J, Li Q, Phipps SS, Jakubczak JL, Stewart DA et al. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum Gene Ther 2000; 11: 1983–1996.

    Article  CAS  PubMed  Google Scholar 

  45. Kuo CJ, Farnebo F, Yu EY, Christofferson R, Swearingen RA, Carter R et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA 2001; 98: 4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wen XY, Bai Y, Stewart AK . Adenovirus-mediated human endostatin gene delivery demonstrates strain-specific antitumor activity and acute dose-dependent toxicity in mice. Hum Gene Ther 2001; 12: 347–358.

    Article  CAS  PubMed  Google Scholar 

  47. Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001; 19: 29–34.

    Article  CAS  PubMed  Google Scholar 

  48. Celik I, Surucu O, Dietz C, Heymach JV, Force J, Hoschele I et al. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer Res 2005; 65: 11044–11050.

    Article  CAS  PubMed  Google Scholar 

  49. Tjin Tham Sjin RM, Naspinski J, Birsner AE, Li C, Chan R, Lo KM et al. Endostatin therapy reveals a U-shaped curve for antitumor activity. Cancer Gene Ther 2006; 13: 619–627.

    Article  CAS  PubMed  Google Scholar 

  50. Kisker O, Becker CM, Prox D, Fannon M, D'Amato R, Flynn E et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 2001; 61: 7669–7674.

    CAS  PubMed  Google Scholar 

  51. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  52. Yoshii Y, Maki Y, Tsuboi K, Tomono Y, Nakagawa K, Hoshino T . Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors. J Neurosurg 1986; 65: 659–663.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou D, Lu Y, Steiner MS, Dalton JT . Cytochrome P-450 2C9 sensitizes human prostate tumor cells to cyclophosphamide via a bystander effect. Antimicrob Agents Chemother 2000; 44: 2659–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei MX, Tamiya T, Chase M, Boviatsis EJ, Chang TK, Kowall NW et al. Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum Gene Ther 1994; 5: 969–978.

    Article  CAS  PubMed  Google Scholar 

  55. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  56. Gage FH . Mammalian neural stem cells. Science 2000; 287: 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  57. Yu JJ, Sun X, Yuan X, Lee JW, Snyder EY, Yu JS . Immunomodulatory neural stem cells for brain tumour therapy. Expert Opin Biol Ther 2006; 6: 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  58. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035–3039.

    Article  CAS  PubMed  Google Scholar 

  59. Lee J, Elkahloun AG, Messina SA, Ferrari N, Xi D, Smith CL et al. Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res 2003; 63: 8877–8889.

    CAS  PubMed  Google Scholar 

  60. Aghi M, Chiocca EA . Gene therapy for glioblastoma. Neurosurg Focus 2006; 20: E18.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Christopher Morris for statistical analysis, Dr Ray Hester for flow cytometric analysis and Dr Judy King for pathological studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lorico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorico, A., Mercapide, J., Soloduschko, V. et al. Primary neural stem/progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma. Cancer Gene Ther 15, 605–615 (2008). https://doi.org/10.1038/cgt.2008.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.23

Keywords

This article is cited by

Search

Quick links