Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterization of HIV-1 TAT peptide as an enhancer of HSV-TK/GCV cancer gene therapy

Abstract

Cancer suicide gene therapy based on herpes simplex virus type I thymidine kinase (HSV-TK) and ganciclovir (GCV) suffers from the lack of efficacy in clinical use, which is mostly due to low gene-transfer efficiency and absence of bystander effect in tumors. We have previously demonstrated the enhancement of GCV cytotoxicity by fusing the HSV-TK with the cell penetrating peptide from HIV-1 transactivator protein transduction domain (TAT PTD). Despite the earlier promising results, we found that the triple fusion protein HIV-1 transactivator protein transduction domain–thymidine kinase suicide gene–green fluorescent protein marker gene (TAT-TK-GFP) increased GCV cytotoxicity only in 3/12 of different human tumor cell lines. Extended GCV exposure enhanced the cytotoxic effect of HSV-TK/GCV gene therapy, but the difference between TK-GFP and TAT-TK-GFP was not statistically significant. The modest improvement on cell killing mediated by TAT PTD in Chinese hamster ovary cells appeared to be associated with cell-surface heparan sulfate proteoglycan (HSPG) composition. However, TAT-mediated increased cell death did not correlate with the density of cell-surface HSPG expression in different tumor cell lines. In conclusion, although some degree of enhancement by TAT was shown in certain tumor cells in vitro, it is unlikely that TAT peptide linked to a suicide protein could be a useful booster of in vivo gene therapy trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  CAS  PubMed  Google Scholar 

  2. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000; 11: 2197–2205.

    Article  CAS  PubMed  Google Scholar 

  3. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  4. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM . In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  5. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  6. Touraine RL, Ishii-Morita H, Ramsey WJ, Blaese RM . The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther 1998; 5: 1705–1711.

    Article  CAS  PubMed  Google Scholar 

  7. Dietz GP, Bahr M . Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2004; 27: 85–131.

    Article  CAS  PubMed  Google Scholar 

  8. Gratton JP, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R et al. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med 2003; 9: 357–362.

    Article  CAS  PubMed  Google Scholar 

  9. Lehmusvaara S, Rautsi O, Hakkarainen T, Wahifors J . Utility of cell-permeable peptides for enhancement of virus-mediated gene transfer to human tumor cells. Biotechniques 2006; 40: 573–574, 576.

    Article  CAS  PubMed  Google Scholar 

  10. Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D'Souza GG . Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 2003; 100: 1972–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K . Antennapedia and HIV transactivator of transcription (TAT) ‘protein transduction domains’ promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 2003; 278: 35109–35114.

    Article  CAS  PubMed  Google Scholar 

  12. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV . Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 2005; 280: 15300–15306.

    Article  CAS  PubMed  Google Scholar 

  13. Vives E, Brodin P, Lebleu B . A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997; 272: 16010–16017.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F . Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 2003; 8: 284–294.

    Article  CAS  PubMed  Google Scholar 

  15. Wadia JS, Stan RV, Dowdy SF . Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004; 10: 310–315.

    Article  CAS  PubMed  Google Scholar 

  16. Merilainen O, Hakkarainen T, Wahlfors T, Pellinen R, Wahlfors J . HIV-1 TAT protein transduction domain mediates enhancement of enzyme prodrug cancer gene therapy in vitro: a study with TAT-TK-GFP triple fusion construct. Int J Oncol 2005; 27: 203–208.

    CAS  PubMed  Google Scholar 

  17. Esko JD, Weinke JL, Taylor WH, Ekborg G, Roden L, Anantharamaiah G et al. Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J Biol Chem 1987; 262: 12189–12195.

    CAS  PubMed  Google Scholar 

  18. Lidholt K, Weinke JL, Kiser CS, Lugemwa FN, Bame KJ, Cheifetz S et al. A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci USA 1992; 89: 2267–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loimas S, Wahlfors J, Janne J . Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. Biotechniques 1998; 24: 614–618.

    Article  CAS  PubMed  Google Scholar 

  20. Pellinen R, Hakkarainen T, Wahlfors T, Tulimaki K, Ketola A, Tenhunen A et al. Cancer cells as targets for lentivirus-mediated gene transfer and gene therapy. Int J Oncol 2004; 25: 1753–1762.

    CAS  PubMed  Google Scholar 

  21. Rubartelli A, Poggi A, Sitia R, Zocchi MR . HIV-I Tat: a polypeptide for all seasons. Immunol Today 1998; 19: 543–545.

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan A, Tikoo A, Kapur AK, Singh M . The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 2007; 117: 148–162.

    Article  CAS  PubMed  Google Scholar 

  23. Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 2005; 145: 1093–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cashman SM, Morris DJ, Kumar-Singh R . Evidence of protein transduction but not intercellular transport by proteins fused to HIV tat in retinal cell culture and in vivo. Mol Ther 2003; 8: 130–142.

    Article  CAS  PubMed  Google Scholar 

  25. Becker-Hapak M, McAllister SS, Dowdy SF . TAT-mediated protein transduction into mammalian cells. Methods 2001; 24: 247–256.

    Article  CAS  PubMed  Google Scholar 

  26. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 1998; 4: 1449–1452.

    Article  CAS  PubMed  Google Scholar 

  27. Leifert JA, Harkins S, Whitton JL . Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther 2002; 9: 1422–1428.

    Article  CAS  PubMed  Google Scholar 

  28. Xia H, Mao Q, Davidson BL . The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors. Nat Biotechnol 2001; 19: 640–644.

    Article  CAS  PubMed  Google Scholar 

  29. Elliger SS, Elliger CA, Lang C, Watson GL . Enhanced secretion and uptake of beta-glucuronidase improves adeno-associated viral-mediated gene therapy of mucopolysaccharidosis type VII mice. Mol Ther 2002; 5: 617–626.

    Article  CAS  PubMed  Google Scholar 

  30. Thust R, Tomicic M, Klocking R, Voutilainen N, Wutzler P, Kaina B . Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in Chinese hamster ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1: implications for gene therapeutic approaches. Cancer Gene Ther 2000; 7: 107–117.

    Article  CAS  PubMed  Google Scholar 

  31. Tomicic MT, Thust R, Kaina B . Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 2002; 21: 2141–2153.

    Article  CAS  PubMed  Google Scholar 

  32. Tasciotti E, Zoppe M, Giacca M . Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat. Cancer Gene Ther 2003; 10: 64–74.

    Article  CAS  PubMed  Google Scholar 

  33. Tasciotti E, Giacca M . Fusion of the human immunodeficiency virus type 1 tat protein transduction domain to thymidine kinase increases bystander effect and induces enhanced tumor killing in vivo. Hum Gene Ther 2005; 16: 1389–1403.

    Article  CAS  PubMed  Google Scholar 

  34. Cascante A, Huch M, Rodriguez LG, Gonzalez JR, Costantini L, Fillat C . Tat8-TK/GCV suicide gene therapy induces pancreatic tumor regression in vivo. Hum Gene Ther 2005; 16: 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  35. Vilcek J, Sen GC . Interferons and other cytokines. In: Fields B, Knipe D, Howley P (eds). Fundamental Virology, 3rd edn. Lippincott-Raven Publishers: Philadelphia, 1996, pp 341–365.

    Google Scholar 

  36. McMillan NA, Chun RF, Siderovski DP, Galabru J, Toone WM, Samuel CE et al. HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase, PKR. Virology 1995; 213: 413–424.

    Article  CAS  PubMed  Google Scholar 

  37. Rautsi O, Lehmusvaara S, Salonen T, Hakkinen K, Sillanpaa M, Hakkarainen T et al. Type I interferon response against viral and non-viral gene transfer in human tumor and primary cell lines. J Gene Med 2007; 9: 122–135.

    Article  CAS  PubMed  Google Scholar 

  38. Mani K, Sandgren S, Lilja J, Cheng F, Svensson K, Persson L et al. HIV-Tat protein transduction domain specifically attenuates growth of polyamine deprived tumor cells. Mol Cancer Ther 2007; 6: 782–788.

    Article  CAS  PubMed  Google Scholar 

  39. Belting M, Persson S, Fransson LA . Proteoglycan involvement in polyamine uptake. Biochem J 1999; 338 (Part 2): 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mi MY, Zhang J, He Y . Inhibition of HIV derived lentiviral production by TAR RNA binding domain of TAT protein. Retrovirology 2005; 2: 71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Luciw P . Human immunodeficiency viruses and their replication. In: Fields B, Knipe D, Howley P (eds). Fundamental Virology, 3rd edn. Lippincott- Raven Publishers: Philadelphia, 1996, pp 845–916.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by North Savo Cancer Foundation and Kuopio University Foundation grants (to OR). We thank Marika Ruponen for kindly providing us CHO cells as well as CHO mutant pgsD-677 and pgsB-618 cells. We are greatly thankful to Dr Sari Pesonen (Molecular Cancer Biology Program & Haartman Institute, University of Helsinki, Finland) for kindly providing us the anti-HSPG antibody, Dr Antti Ropponen (Department of Clinical Microbiology, University of Kuopio, Finland) for the phycoerythrin-conjugated anti-mouse antibody and Professor Ilkka Julkunen (National Public Health Institute, Finland) for the anti-MxA antibody. We also thank Professors Juhani Jänne and Leena Alhonen (AI Virtanen Institute, University of Kuopio, Finland) for their valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Rautsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautsi, O., Lehmusvaara, S., Ketola, A. et al. Characterization of HIV-1 TAT peptide as an enhancer of HSV-TK/GCV cancer gene therapy. Cancer Gene Ther 15, 303–314 (2008). https://doi.org/10.1038/cgt.2008.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.17

Keywords

This article is cited by

Search

Quick links