Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Beyond consolidation: auto-SCT and immunotherapy for plasma cell myeloma

Abstract

Autologous hematopoietic cell transplantation (auto-HCT) is the standard consolidation therapy for plasma cell myeloma patients following induction therapy. Auto-HCT improves disease-free survival (DFS), but is generally not curative. The allogeneic HCT experience demonstrated that T-cell immunotherapy can confer long-term DFS. Preclinical and clinical data indicate that myeloma-associated Ags elicit humoral and cellular immune responses (IRs) in myeloma patients. These findings strongly suggest that the immunotherapeutic strategies, including immune checkpoint inhibitors, therapeutic cancer vaccines and adoptive cellular therapies, are promising avenues of clinical research that may be most applicable in the minimal residual disease state following auto-HCT. These strategies are designed to prime or augment antimyeloma IRs and promote a ‘host-vs-myeloma’ effect that may result in durable DFS. Innovative clinical trials investigating immune checkpoint inhibitors and cancer vaccines have demonstrated that robust immunity against myeloma-associated Ags can be elicited in the setting of auto-HCT. A diverse array of immunotherapeutic strategies have entered clinical trials in myeloma, including PD-1/PD-L1 inhibitors, DC/myeloma cell fusion vaccines and adoptive chimeric Ag receptor T-cell therapy, and further investigation of combinations of immunologic and pharmaceutical agents are expected in the near future. In this review, we will discuss the preclinical data supporting immunotherapy in auto-HCT for myeloma, clinical investigation of these strategies and the future prospects of immunotherapy in pursuit of the goal of curative therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996; 335: 91–97.

    Article  CAS  PubMed  Google Scholar 

  2. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  PubMed  Google Scholar 

  3. Koreth J, Cutler CS, Djulbegovic B, Behl R, Schlossman RL, Munshi NC et al. High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: A systematic review and meta-analysis of randomized controlled trials. Biol Blood Marrow Transplant 2007; 13: 183–196.

    CAS  PubMed  Google Scholar 

  4. Bensinger WI, Maloney D, Storb R . Allogeneic hematopoietic cell transplantation for multiple myeloma. Semin Hematol 2001; 38: 243–249.

    CAS  PubMed  Google Scholar 

  5. Gahrton G, Tura S, Ljungman P, Belanger C, Brandt L, Cavo M et al. Allogeneic bone marrow transplantation in multiple myeloma. European Group for Bone Marrow Transplantation. N Engl J Med 1991; 325: 1267–1273.

    CAS  PubMed  Google Scholar 

  6. Bensinger WI, Buckner CD, Anasetti C, Clift R, Storb R, Barnett T et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood 1996; 88: 2787–2793.

    CAS  PubMed  Google Scholar 

  7. Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 2005; 105: 4532–4539.

    CAS  PubMed  Google Scholar 

  8. Huff CA, Fuchs EJ, Noga SJ, O'Donnell PV, Ambinder RF, Diehl L et al. Long-term follow-up of T cell-depleted allogeneic bone marrow transplantation in refractory multiple myeloma: importance of allogeneic T cells. Biol Blood Marrow Transplant 2003; 9: 312–319.

    PubMed  Google Scholar 

  9. Kroger N, Shimoni A, Zagrivnaja M, Ayuk F, Lioznov M, Schieder H et al. Low-dose thalidomide and donor lymphocyte infusion as adoptive immunotherapy after allogeneic stem cell transplantation in patients with multiple myeloma. Blood 2004; 104: 3361–3363.

    PubMed  Google Scholar 

  10. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 2003; 197: 1667–1676.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dhodapkar MV, Krasovsky J, Osman K, Geller MD . Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 2003; 198: 1753–1757.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhodapkar MV, Krasovsky J, Olson K . T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc Natl Acad Sci USA 2002; 99: 13009–13013.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 2005; 65: 2026–2034.

    CAS  PubMed  Google Scholar 

  14. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007; 109: 1103–1112.

    CAS  PubMed  Google Scholar 

  15. Goodyear O, Piper K, Khan N, Starczynski J, Mahendra P, Pratt G et al. CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood 2005; 106: 4217–4224.

    CAS  PubMed  Google Scholar 

  16. van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105: 3939–3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116: 2286–2294.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Murillo O, Arina A, Hervas-Stubbs S, Gupta A, McCluskey B, Dubrot J et al. Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res 2008; 14: 6895–6906.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson KC, Soiffer R, DeLage R, Takvorian T, Freedman AS, Rabinowe SL et al. T-cell-depleted autologous bone marrow transplantation therapy: analysis of immune deficiency and late complications. Blood 1990; 76: 235–244.

    CAS  PubMed  Google Scholar 

  20. Guillaume T, Rubinstein DB, Symann M . Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 1998; 92: 1471–1490.

    CAS  PubMed  Google Scholar 

  21. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 2011; 117: 788–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 2005; 11: 1230–1237.

    CAS  PubMed  Google Scholar 

  23. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007; 117: 2197–2204.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 2007; 204: 49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202: 907–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 2007; 117: 492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26: 5233–5239.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Egen JG, Kuhns MS, Allison JP . CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002; 3: 611–618.

    CAS  PubMed  Google Scholar 

  29. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann NY Acad Sci 2013; 1291: 1–13.

    CAS  PubMed  Google Scholar 

  30. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Robert C, Thomas L, Bondarenko I, O'Day S M DJ, Garbe C et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364: 2517–2526.

    CAS  PubMed  Google Scholar 

  32. Kitano S, Tsuji T, Liu C, Hirschhorn-Cymerman D, Kyi C, Mu Z et al. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol Res 2013; 1: 235–244.

    CAS  PubMed  Google Scholar 

  33. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012; 366: 925–931.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weber JS, Hamid O, Chasalow SD, Wu DY, Parker SM, Galbraith S et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J Immunother 2012; 35: 89–97.

    CAS  PubMed  Google Scholar 

  35. Naidoo J, Page DB, Wolchok JD . Immune checkpoint blockade. Hematol Oncol Clin North Am 2014; 28: 585–600.

    PubMed  Google Scholar 

  36. Topalian SL, Drake CG, Pardoll DM . Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012; 24: 207–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369: 134–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384: 1109–1117.

    CAS  PubMed  Google Scholar 

  39. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369: 122–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 2013; 31: 4199–4206.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N . Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99: 12293–12297.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110: 296–304.

    CAS  PubMed  Google Scholar 

  44. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34: 409–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 2013; 27: 464–472.

    CAS  PubMed  Google Scholar 

  46. Hallett WH, Jing W, Drobyski WR, Johnson BD . Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant 2011; 17: 1133–1145.

    CAS  PubMed  Google Scholar 

  47. Kearl TJ, Jing W, Gershan JA, Johnson BD . Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol 2013; 190: 5620–5628.

    CAS  PubMed  Google Scholar 

  48. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M et al. Preliminary Results of a Phase I Study of Nivolumab (BMS-936558) in Patients with Relapsed or Refractory Lymphoid Malignancies. American Society of Hematology Annual Meeting 2014. San Francisco, CA, USA.

    Google Scholar 

  49. Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R . Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 2008; 38: 1033–1042.

    CAS  PubMed  Google Scholar 

  50. Dyall R, Bowne WB, Weber LW, LeMaoult J, Szabo P, Moroi Y et al. Heteroclitic immunization induces tumor immunity. J Exp Med 1998; 188: 1553–1561.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A . Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol 2001; 167: 787–796.

    CAS  PubMed  Google Scholar 

  52. Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, Sette A, Rosenberg SA et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 1996; 157: 2539–2548.

    CAS  PubMed  Google Scholar 

  53. Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Roberts W, Scheinberg DA . Synthetic peptide analogs derived from bcr/abl fusion proteins and the induction of heteroclitic human T-cell responses. Haematologica 2005; 90: 1324–1332.

    CAS  PubMed  Google Scholar 

  54. Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med 2001; 194: 833–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen JL, Dunbar PR, Gileadi U, Jager E, Gnjatic S, Nagata Y et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000; 165: 948–955.

    CAS  PubMed  Google Scholar 

  56. Tyler EM, Jungbluth AA, O'Reilly RJ, Koehne G . WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. Blood 2013; 121: 308–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Carmon L, Avivi I, Kovjazin R, Zuckerman T, Dary L, Gatt ME et al. Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients. Br J Haematol, (epub ahead of print 11 December 2014; doi:10.1111/bjh.13245).

    PubMed  Google Scholar 

  58. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 1999; 93: 2411–2419.

    CAS  PubMed  Google Scholar 

  59. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000; 6: 621–627.

    CAS  PubMed  Google Scholar 

  60. Lacy MQ, Mandrekar S, Dispenzieri A, Hayman S, Kumar S, Buadi F et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 2009; 84: 799–802.

    PubMed  PubMed Central  Google Scholar 

  61. Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19: 3640–3648.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34: 409–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosenblatt J, Avivi I, Vasir D, Uhl L, Katz T, Somaiya P et al. Blockade of PD-1 in combination with dendritic cell/myeloma fusion cell vaccination following autologous stem cell transplantation. Biol Blood Marrow Transplant 2013; 19: S109–S109.

    Google Scholar 

  64. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res 2014; 20: 1355–1365.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen AD, Lendvai N, Gnjatic S, Jungbluth AA, Bertolini S, Pan L et al. MAGE-A3 recombinant protein (recMAGE-A3) immunotherapy and autologous peripheral blood lymphocyte (PBL) infusion is safe and induces robust humoral immune responses in multiple myeloma (MM) patients undergoing autologous stem cell transplantation (autoSCT). J Clin Oncol 2013; 122: 154–154.

    Google Scholar 

  66. Noonan K, Huff CA, Davis Sproul JM, Lemas MVM, Rudraraju L, Luznik L et al. Phase I/II study of marrow infiltrating lymphocytes (MILs) generates measurable myeloma-specific immunity in the autologous stem cell transplant (SCT) setting. 53rd ASH, Annual Meeting and Exposition 10–13 December 2011. San Diego, CA, USA, Abstract 997.

    Google Scholar 

  67. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006; 203: 2691–2702.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 2013; 190: 3815–3823.

    CAS  PubMed  Google Scholar 

  69. Kroger N, Zabelina T, Berger J, Duske H, Klyuchnikov E, Binder T et al. Donor KIR haplotype B improves progression-free and overall survival after allogeneic hematopoietic stem cell transplantation for multiple myeloma. Leukemia 2011; 25: 1657–1661.

    CAS  PubMed  Google Scholar 

  70. Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Marsh SG et al. Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J Immunol 2014; 192: 4592–4600.

    CAS  PubMed  Google Scholar 

  71. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    CAS  PubMed  Google Scholar 

  72. Shi J, Tricot G, Szmania S, Rosen N, Garg TK, Malaviarachchi PA et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 2008; 143: 641–653.

    PubMed  PubMed Central  Google Scholar 

  73. Garg TK, Szmania SM, Khan JA, Hoering A, Malbrough PA, Moreno-Bost A et al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 2012; 97: 1348–1356.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Siegler U, Meyer-Monard S, Jorger S, Stern M, Tichelli A, Gratwohl A et al. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 2010; 12: 750–763.

    CAS  PubMed  Google Scholar 

  75. Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 2013; 8: e76781.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    PubMed  PubMed Central  Google Scholar 

  78. Kalos M, Rapoport AP, Stadtmauer EA, Vogl DT, Weiss BM, Binder-Scholl GK et al. Prolonged T cell persistence, homing to marrow and selective targeting of antigen positive tumor in multiple myeloma patients following adoptive transfer of T cells genetically engineered to express an affinity-enhanced T cell receptor against the cancer testis antigens NY-ESO-1 and Lage-1. Blood 2012; 120: 755 (ASH Annual Meeting Abstracts).

    Google Scholar 

  79. Rapoport AP, Stadtmauer EA, Vogl DT, Weiss BM, Binder-Scholl GK, Brewer JE et al. Adoptive transfer of gene-modified T-cells engineered to express high-affinity TCRs for cancer-testis antigens (CTAs) NY-ESO-1 or Lage-1, in MM patients post auto-SCT. Blood 2012; 120: 472 (ASH Annual Meeting Abstracts).

    Google Scholar 

  80. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122: 863–871.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barrett DM, Singh N, Porter DL, Grupp SA, June CH . Chimeric antigen receptor therapy for cancer. Annu Rev Med 2014; 65: 333–347.

    CAS  PubMed  Google Scholar 

  82. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6: 224ra25.

    PubMed  PubMed Central  Google Scholar 

  83. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. (e-pub ahead of print 25 August 2014; doi: JCO.2014.56.2025.

  85. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.

    PubMed  PubMed Central  Google Scholar 

  86. Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol 2014; 8: 297–310.

    CAS  PubMed  Google Scholar 

  87. Mihara K, Bhattacharyya J, Kitanaka A, Yanagihara K, Kubo T, Takei Y et al. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eliminating myeloma cells. Leukemia 2012; 26: 365–367.

    CAS  PubMed  Google Scholar 

  88. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108: 3890–3897.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Casucci M, Nicolis di Robilant B, Falcone L, Camisa B, Norelli M, Genovese P et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 2013; 122: 3461–3472.

    CAS  PubMed  Google Scholar 

  90. Peinert S, Prince HM, Guru PM, Kershaw MH, Smyth MJ, Trapani JA et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 2010; 17: 678–686.

    CAS  PubMed  Google Scholar 

  91. Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 2014; 28: 917–927.

    CAS  PubMed  Google Scholar 

  92. Claudio JO, Masih-Khan E, Tang H, Goncalves J, Voralia M, Li ZH et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002; 100: 2175–2186.

    CAS  PubMed  Google Scholar 

  93. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004; 103: 689–694.

    CAS  PubMed  Google Scholar 

  94. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    CAS  PubMed  Google Scholar 

  95. Bellucci R, Alyea EP, Chiaretti S, Wu CJ, Zorn E, Weller E et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood 2005; 105: 3945–3950.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Neri P, Kumar S, Fulciniti MT, Vallet S, Chhetri S, Mukherjee S et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 2007; 13: 5903–5909.

    CAS  PubMed  Google Scholar 

  97. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19: 2048–2060.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014; 123: 3128–3138.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    CAS  PubMed  Google Scholar 

  100. Bergsagel PL, Smith AM, Szczepek A, Mant MJ, Belch AR, Pilarski LM . In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain. Blood 1995; 85: 436–447.

    CAS  PubMed  Google Scholar 

  101. Boucher K, Parquet N, Widen R, Shain K, Baz R, Alsina M et al. Stemness of B-cell progenitors in multiple myeloma bone marrow. Clin Cancer Res 2012; 18: 6155–6168.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68: 190–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 2013; 24: 289–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Olin RL, Vogl DT, Porter DL, Luger SM, Schuster SJ, Tsai DE et al. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant 2009; 43: 417–422.

    CAS  PubMed  Google Scholar 

  105. Michaelis LC, Saad A, Zhong X, Le-Rademacher J, Freytes CO, Marks DI et al. Salvage second hematopoietic cell transplantation in myeloma. Biol Blood Marrow Transplant 2013; 19: 760–766.

    PubMed  Google Scholar 

  106. Cohen AD, Lendvai N, Gnjatic S, Jungbluth AA, Bertolini S, Pan L et al. MAGE-A3 recombinant protein (recMAGE-A3) immunotherapy and autologous peripheral blood lymphocyte (PBL) infusion is safe and induces robust humoral immune responses in multiple myeloma (MM) patients undergoing autologous stem cell transplantation (autoSCT). American Society of Hematology Annual Meeting 2013. New Orleans, LA, USA.

    Google Scholar 

  107. Borrello I, Biedrzycki B, Sheets N, George B, Racke F, Loper K et al. Autologous tumor combined with a GM-CSF-secreting cell line vaccine (GVAX(R)) following autologous stem cell transplant (ASCT) in multiple myeloma. ASH Annual Meeting Abstracts 2004; 104: 440.

    Google Scholar 

  108. Massaia M, Borrione P, Battaglio S, Mariani S, Beggiato E, Napoli P et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 1999; 94: 673–683.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H J Cho.

Ethics declarations

Competing interests

ADC has received research funding from Bristol-Myers Squibb; has been on the advisory board of Bristol-Myers Squibb and Janssen. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lendvai, N., Cohen, A. & Cho, H. Beyond consolidation: auto-SCT and immunotherapy for plasma cell myeloma. Bone Marrow Transplant 50, 770–780 (2015). https://doi.org/10.1038/bmt.2015.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.5

This article is cited by

Search

Quick links