Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cation effects in doped La2CuO4 superconductors

Abstract

The critical temperatures of (Ln1−xMx)2CuO4 superconductors1, in which Ln3+ (La and other lanthanides) and M2+ (Ca, Sr, Ba) cations are randomly distributed amongst the ‘type A’ lattice sites, are known to depend on the doping level, x, and the mean A-site cation radius, 〈rA〉 (refs 2, 3). Here we show, by studying series of compositions with the same doping level and 〈rA〉, that the critical temperature decreases linearly with increasing A-site disorder, as quantified by the variance in the distribution of A-site cation radii. From this, we are able to show that, in the absence of disorder, the critical temperature should increase quadratically with 〈rA〉 for superconductors containing a single CuO2 layer. Our results therefore show that the critical temperature is very sensitive to lattice strains, as has also been shown for the metal to insulator transition temperature in the magnetoresistive (Ln1−xMx)MnO3 perovskites4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Variation of Tc with A-cation size variance σ2 for three series of (Ln0.925M0.075)2CuO4 samples.
Figure 3

Similar content being viewed by others

References

  1. Bednorz, J. G. & Muller, K. A. Possible high-Tcsuperconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Torrance, J. B. et al. Properties that change as superconductivity disappears at high-doping concentrations in La2−xSrxCuO4. Phys. Rev. B 40, 8872–8877 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Tarascon, J. M., Greene, L. H., McKinnon, W. R. & Hull, G. W. Superconductivity in rare-earth doped oxygen-defect perovskites La2−x−yLnySrxCuO4−z. Solid State Commun. 63, 499–505 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Rodriguez-Martinez, L. M. & Attfield, J. P. Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

  6. Tarascon, J. M., Green, L. H., McKinnon, W. R., Hull, G. W. & Geballe, T. H. Superconductivity at 40 K in the oxygen-defect perovskites La2−xSrxCuO4−y. Science 235, 1373–1376 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Oh-Ishi, K. & Syono, Y. Dependence of lattice parameters and Tcon the hole concentration determined by precise measurement of the oxygen content of MxLa2−xCuO4−y(M = Ba, Sr, Ca). J. Solid State Chem. 95, 136–144 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Büchner, B. et al. Low temperature phase transition and superconductivity in (LaNd)-Sr-Cu-O. Physica C 185–189;, 903–904 (1991).

    Article  ADS  Google Scholar 

  9. Day, P. et al. Temperature dependence of the crystal structure of the ceramic superconductor La1.85Sr0.15CuO4: a powder neutron diffraction study. J. Phys. C: Solid State Phys. 20, L429–L434 (1987).

    Article  CAS  Google Scholar 

  10. Dabrowski, B. et al. Suppression of superconducting transition temperature in orthorhombic La2−xCaxCuO4. Physica C 217, 455–460 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Dabrowski, B. et al. Dependence of superconducting transition-temperature on doping and structural distortion of the CuO2planes in La2−xMxCuO4(M = Nd, Ca, Sr). Phys. Rev. Lett. 76, 1348–1351 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Slater, P. R. et al. An improved route to the synthesis of superconducting copper oxyfluorides Sr2−xAxCuO2F2+δ(A = Ca, Ba) using transition metal difluorides as fluorinating reagents. Physica C 253, 16–22 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Huve, M. et al. A70 K superconductor, the oxycarbonate Tl0.5Pb0.5Sr4Cu2(CO3)O7. Physica C 205, 219–224 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Wagner, J. L. et al. Multiple defects in overdoped Tl2Ba2CuO6+δ: effects on structure and superconductivity. Physica C 277, 170–182 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Asab, A., Armstrong, A. R., Gameson, I. & Edwards, P. P. Single-step synthesis and crystal structure of HgBa2CuO4+δwith a Tcof 97 K. Physica C 255, 180–187 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Axe, J. D. & Crawford, M. K. Structural instabilities in lanthanum cuprate superconductors. J. Low Temp. Phys. 95, 271–284 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Rodriguez-Martinez, L. M. & Attfield, J. P. Cation disorder and the metal-insulator transition temperature in manganese oxide perovskites. Phys. Rev. B (in the press).

  18. Bordet, P. et al. Structural instability around Tcobserved in Hg-1201 by neutron powder diffraction and EXAFS. Physica C 282, 1081–1082 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Fuess for access to thermogravimetric equipment at Technische Universitat Darmstadt, and the British Council for an ARC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Attfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attfield, J., Kharlanov, A. & McAllister, J. Cation effects in doped La2CuO4 superconductors. Nature 394, 157–159 (1998). https://doi.org/10.1038/28120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing