Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A simplified system for generating oncolytic adenovirus vector carrying one or two transgenes

Abstract

Oncolytic adenoviruses, also called conditionally replicating adenoviruses (CRADs), have been widely applied in cancer gene therapy. However, the construction of CRADs is still time-consuming. In this study, we attempted to establish a simplified method of generating CRADs based on AdEasy system. A novel plasmid pTE-TPE-GM was constructed, containing sequentially positioned promoter of telomerase reverse transcriptase (TERTp), coding sequence of E1A gene, promoter of E1B gene, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, internal ribosome entry site sequence and coding sequence of E1B55K gene. The CRAD-generating system reported here include three plasmids: pTE-TPE-GM, pShuttle-CMV and AdEasy-1, one Escherichia coli strain BJ5183, and the packaging cell line 293. Using this system, an oncolytic adenovirus carrying B7-1 (CD80) and GM-CSF genes was successfully constructed and designated as Ad-CD80-TPE-GM. The expression of GM-CSF increased more than 9000 times in tumor cell lines infected by Ad-CD80-TPE-GM at a multiplicity of infection (MOI) of 5, compared with the cells infected by replication-defective control virus. Similarly, the expression of CD80 also increased 9–140 times. Ad-CD80-TPE-GM selectively replicates in TERT-positive tumor cells, and the progeny viruses can reach up to 375 infection units (IU) per cell. In vitro study showed that the Ad-CD80-TPE-GM induced an obvious oncolytic effect at MOI of 0.1, and killed about 80% TERT-positive tumor cells within 7 days at an MOI of 1. The antitumor effect of this vector was also investigated in Hep2 xenograft model of nude mice, and the tumor inhibition rate reached 74% at day 30 after the administration with a total dose of 1 × 109 IU Ad-CD80-TPE-GM. Intratumoral injection of Ad-CD80-TPE-GM slightly induced neutralizing antibody against the oncolytic adenovirus in nude mice, which might contribute to the virus clearance in vivo. In conclusion, we successfully constructed an oncolytic CRAD carrying GM-CSF and CD80 gene. More importantly, this system can be modified to generate novel transcriptionally regulated CRADs with different tissue-specific promoters or transgenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rein DT, Breidenbach M, Curiel DT . Current developments in adenovirus-based cancer gene therapy. Future Oncol 2006; 2: 137–143.

    Article  CAS  Google Scholar 

  2. Edelstein ML, Abedi MR, Wixon J, Edelstein RM . Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med 2004; 6: 597–602.

    Article  Google Scholar 

  3. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  Google Scholar 

  4. Ko D, Hawkins L, Yu DC . Development of transcriptionally regulated oncolytic adenoviruses. Oncogene 2005; 24: 7763–7774.

    Article  CAS  Google Scholar 

  5. Kanerva A, Hemminki A . Modified adenoviruses for cancer gene therapy. Int J Cancer 2004; 110: 475–480.

    Article  CAS  Google Scholar 

  6. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  Google Scholar 

  7. Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu CP, Majumdar AS . Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther 2003; 10: 239–249.

    Article  CAS  Google Scholar 

  8. Yi X, Tesmer VM, Savre-Train I, Shay JW, Wright WE . Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 1999; 19: 3989–3997.

    Article  CAS  Google Scholar 

  9. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  Google Scholar 

  10. Qiu ZH, Wu CT, Lao MF, Pan LZ, Li YM . Growth suppression and immunogenicity enhancement of Hep-2 or primary laryngeal cancer cells by adenovirus-mediated co-transfer of human wild-type p53, granulocyte-macrophage colony-stimulating factor and B7-1 genes. Cancer Lett 2002; 182: 147–154.

    Article  CAS  Google Scholar 

  11. Lu ZZ, Ni F, Hu ZB, Wang L, Wang H, Zhang QW et al. Efficient gene transfer into hematopoietic cells by a retargeting adenoviral vector system with a chimeric fiber of adenovirus serotype 5 and 11p. Exp Hematol 2006; 34: 1171–1182.

    Article  CAS  Google Scholar 

  12. Sweeney JA, Hennessey Jr JP . Evaluation of accuracy and precision of adenovirus absorptivity at 260 nm under conditions of complete DNA disruption. Virology 2002; 295: 284–288.

    Article  CAS  Google Scholar 

  13. Maizel Jr JV, White DO, Scharff MD . The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 1968; 36: 115–125.

    Article  CAS  Google Scholar 

  14. Nyberg-Hoffman C, Shabram P, Li W, Giroux D, Aguilar-Cordova E . Sensitivity and reproducibility in adenoviral infectious titer determination. Nat Med 1997; 3: 808–811.

    Article  CAS  Google Scholar 

  15. Kozarsky KF, McKinley DR, Austin LL, Raper SE, Stratford-Perricaudet LD, Wilson JM . In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 1994; 269: 13695–13702.

    CAS  PubMed  Google Scholar 

  16. Pelleitier M, Montplaisir S . The nude mouse: a model of deficient T-cell function. Methods Achiev Exp Pathol 1975; 7: 149–166.

    CAS  PubMed  Google Scholar 

  17. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007; 4: 101–117.

    Article  CAS  Google Scholar 

  18. Cross D, Burmester JK . Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4: 218–227.

    Article  CAS  Google Scholar 

  19. Woo Y, Adusumilli PS, Fong Y . Advances in oncolytic viral therapy. Curr Opin Investig Drugs 2006; 7: 549–559.

    CAS  PubMed  Google Scholar 

  20. Burgert HG, Blusch JH . Immunomodulatory functions encoded by the E3 transcription unit of adenoviruses. Virus Genes 2000; 21: 13–25.

    Article  CAS  Google Scholar 

  21. Wai LK . Telomeres, telomerase, and tumorigenesis--a review. MedGenMed 2004; 6: 19.

    PubMed  PubMed Central  Google Scholar 

  22. Shay JW, Wright WE . Telomerase activity in human cancer. Curr Opin Oncol 1996; 8: 66–71.

    Article  CAS  Google Scholar 

  23. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL . Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Therapy 2003; 10: 1241–1247.

    Article  CAS  Google Scholar 

  24. Irving J, Wang Z, Powell S, O'Sullivan C, Mok M, Murphy B et al. Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther 2004; 11: 174–185.

    Article  CAS  Google Scholar 

  25. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003; 63: 3181–3188.

    CAS  PubMed  Google Scholar 

  26. Hoffmann D, Jogler C, Wildner O, Jakubczak JL, Ryan P, Gorziglia M et al. Effects of the Ad5 upstream E1 region and gene products on heterologous promoters. J Gene Med 2005; 7: 1356–1366.

    Article  CAS  Google Scholar 

  27. Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res 2003; 63: 1490–1499.

    CAS  PubMed  Google Scholar 

  28. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114: 241–253.

    Article  CAS  Google Scholar 

  29. Bortolanza S, Qian C, Kramer MG, Gomar C, Prieto J, Farinati F et al. An oncolytic adenovirus controlled by a modified telomerase promoter is attenuated in telomerase-negative cells, but shows reduced activity in cancer cells. J Mol Med 2005; 83: 736–747.

    Article  CAS  Google Scholar 

  30. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E . The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 1992; 89: 7742–7746.

    Article  CAS  Google Scholar 

  31. Schmitz M, Graf C, Gut T, Sirena D, Peter I, Dummer R et al. Melanoma cultures show different susceptibility towards E1A-, E1B-19 kDa- and fiber-modified replication-competent adenoviruses. Gene Therapy 2006; 13: 893–905.

    Article  CAS  Google Scholar 

  32. Liu TC, Hallden G, Wang Y, Brooks G, Francis J, Lemoine N et al. An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumor necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Mol Ther 2004; 9: 786–803.

    Article  CAS  Google Scholar 

  33. Kim J, Cho JY, Kim JH, Jung KC, Yun CO . Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy. Cancer Gene Ther 2002; 9: 725–736.

    Article  CAS  Google Scholar 

  34. Ngoi SM, Chien AC, Lee CG . Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther 2004; 4: 15–31.

    Article  CAS  Google Scholar 

  35. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T . IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 2000; 1: 376–382.

    Article  CAS  Google Scholar 

  36. Aiello L, Guilfoyle R, Huebner K, Weinmann R . Adenovirus 5 DNA sequences present and RNA sequences transcribed in transformed human embryo kidney cells (HEK-Ad-5 or 293). Virology 1979; 94: 460–469.

    Article  CAS  Google Scholar 

  37. Collins CG, Tangney M, Larkin JO, Casey G, Whelan MC, Cashman J et al. Local gene therapy of solid tumors with GM-CSF and B7-1 eradicates both treated and distal tumors. Cancer Gene Ther 2006; 13: 1061–1071.

    Article  CAS  Google Scholar 

  38. Choi KJ, Kim JH, Lee YS, Kim J, Suh BS, Kim H et al. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Therapy 2006; 13: 1010–1020.

    Article  CAS  Google Scholar 

  39. Chong H, Todryk S, Hutchinson G, Hart IR, Vile RG . Tumour cell expression of B7 costimulatory molecules and interleukin-12 or granulocyte-macrophage colony-stimulating factor induces a local antitumour response and may generate systemic protective immunity. Gene Therapy 1998; 5: 223–232.

    Article  CAS  Google Scholar 

  40. Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J et al. Impact of human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clin Cancer Res 2004; 10: 7199–7206.

    Article  CAS  Google Scholar 

  41. Working PK, Lin A, Borellini F . Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses. Oncogene 2005; 24: 7792–7801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jia-Xi Wang for modifying this manuscript. This project was supported by Chinese National Basic Research and Development ‘973’ grants (2004CB518801) and Chinese National Natural Science Foundation (no. 30400189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z-Z Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, ZB., Wu, CT., Wang, H. et al. A simplified system for generating oncolytic adenovirus vector carrying one or two transgenes. Cancer Gene Ther 15, 173–182 (2008). https://doi.org/10.1038/sj.cgt.7701105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701105

Keywords

This article is cited by

Search

Quick links