Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combinatorial synergy induced by adenoviral-mediated mda-7 and Herceptin in Her-2+ breast cancer cells

Abstract

The melanoma differentiation-associated gene-7 (mda-7) is a member of the interleukin-10 cytokine family and a novel tumor suppressor gene. Adenoviral-mediated mda-7 (Ad-mda7) gene transfer has tumor-specific growth inhibitory and proapoptotic effects in a broad spectrum of cancer cells. In breast cancer cells, adenoviral-induced mda-7 expression triggers antiproliferative effects by downregulation of survival signals, such as Bcl-2 and Akt. The anti-human epidermal growth factor receptor-2 (Her-2) monoclonal antibody, Trastuzumab (Herceptin), increases the sensitivity of Her-2/neu-overexpressing breast cancer cells to chemotherapeutic agents and radiotherapy. In this study, we evaluate the effects of treatment with Ad-mda7 and Herceptin combination therapy in a panel of Her-2/neu-overexpressing cell lines, and in established tumors in nude mice. Compared to individual treatments, the combination of Ad-mda7 and Herceptin elicits supra-additive antitumor activity in Her-2/neu-overexpressing tumor cell lines: increased cell death, cell cycle block and apoptosis. The Ad-mda7 and Herceptin interaction was shown to be synergistic by isobologram analysis. Ad-mda7 does not alter cell surface Her-2/neu levels, but the combination of Ad-mda7+Herceptin results in increased expression of cell surface E-cadherin with concomitant translocation of β-catenin from the nucleus to the cell membrane. In vivo, the combination of Ad-mda7 and Herceptin showed significantly increased antitumor activity (P<0.003) against Her-2/neu-overexpressing tumors. These data suggest that the combination of Ad-mda7 with Herceptin may be a novel therapy for breast cancer patients whose tumors overexpress Her-2/neu. The observed synergistic effect may improve treatment options for otherwise poorly responsive, Her-2-positive, breast cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Slamon DJ, Clark GM, Wong SJ, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  2. Yu D, Hung MC . Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 2000; 19: 6115–6121.

    Article  CAS  Google Scholar 

  3. Baselga J, Norton L, Albaneli J, Young-Mee K, Mendelsohnm J . Recombinant humanized anti-Her2 antibody (Herceptin) enhances the anti-tumor activity of Paclitaxel and Doxorubicin against Her2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58: 2825–2831.

    CAS  Google Scholar 

  4. Winer EP, Burstein HJ . New combinations with Herceptin in metastatic breast cancer. Oncology 2001; 61 (Suppl 2): 50–57.

    Article  CAS  Google Scholar 

  5. Baselga J, Carbonell X, Castaneda-Soto NJ, Clemens M, Green M, Harvey V et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 2005; 23: 2162–2171.

    Article  CAS  Google Scholar 

  6. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with Trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 2005; 23: 3656–3659.

    Article  Google Scholar 

  7. Nieto Y, Vredenburgh JJ, Shpall EJ, Bearman SI, McSweeney PA, Chao N et al. Phase II feasibility and pharmacokinetic study of concurrent administration of trastuzumab and high-dose chemotherapy in advanced HER2+ breast cancer. Clin Cancer Res 2004; 10: 7136–7143.

    Article  CAS  Google Scholar 

  8. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–2648.

    Article  CAS  Google Scholar 

  9. Seidman AD, Fornier MN, Esteva FJ, Tan L, Captain S, Bach A et al. Weekly Trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 2001; 19: 2587–2595.

    Article  CAS  Google Scholar 

  10. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER2/neu proto-oncogene in human breast cancer and ovarian cancer. Science 2001; 244: 707–712.

    Article  Google Scholar 

  11. Tsai KB, Hou MF, Lin HJ, Chai CY, Liu CS, Huang TJ . Expression of HER-2/NEU oncoprotein in familial and non-familial breast cancer. Kaohsiung J Med Sci 2001; 17: 64–76.

    CAS  PubMed  Google Scholar 

  12. Marty M, Cognetti D, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M et al. Efficacy and safety of Trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer given as first-line treatment: results of a randomized phase II trial by the M77001 Study Group. J Clin Oncol 2005; 23: 4265–4274.

    Article  CAS  Google Scholar 

  13. Wolff AC, Bonetti M, Sparano JA, Wang M, Davidson NE, on behalf of ECOG. Cardiac safety of Trastuzumab in combination with pegylated liposomal doxorubicin and docetaxel in HER2-positive metastatic breast cancer: preliminary results of the Eastern Cooperative Oncology Group trial E3198. Proc Am Soc Clin Oncol 2003; 22: 18.

    Google Scholar 

  14. Trigo J, Climent MA, Gil M, Llunch A, Hornedo J, Gascon P et al. Cardiac safety and activity of a phase I study of 3-weely Myocet in combination with weekly Herceptin and paclitaxel in HER2-positive locally advanced or metastatic breast cancer. Proc Am Soc Clin Oncol 2002; 21: 61a (abtr 242).

    Google Scholar 

  15. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  Google Scholar 

  16. Jiang H, Su Z-Z, Lin JJ, Goldstein NI, Young CS, Fisher PB . The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA 1996; 93: 9160–9165.

    Article  CAS  Google Scholar 

  17. Su Z-Z, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 1998; 95: 14400–14405.

    Article  CAS  Google Scholar 

  18. Mhashilkar AM, Schrock RD, Hindi M, Liao J, Sieger K, Kourouma F et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med 2001; 7: 271–282.

    Article  CAS  Google Scholar 

  19. Su Z-Z, Madireddi MT, Lin JJ, Young CSH, Kitada S, Reed JC et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 1998; 95: 14400–14405.

    Article  CAS  Google Scholar 

  20. Saeki T, Mhashilkar A, Chada S, Branch C, Roth JA, Ramesh R . Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Therapy 2000; 7: 2051–2057.

    Article  CAS  Google Scholar 

  21. Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst JA, Mumm JB, Leitner WW et al. MDA-7/IL-24 is a unique cytokine–tumor suppressor in the IL-10 family. Int Immunopharmacol 2004; 4: 649–667.

    Article  CAS  Google Scholar 

  22. Saeki T, Mhashilkar A, Swanson X, Zumstein L, Branch C, Roth JA et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene 2002; 21: 4558–4566.

    Article  CAS  Google Scholar 

  23. Madireddi MT, Su Z-Z, Young CS, Goldstein NI, Fisher PB . mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv Exp Med Biol 2000; 465: 239–261.

    Article  CAS  Google Scholar 

  24. Lebedeva IV, Su Z-Z, Chang Y, Kitada S, Reed JC, Fisher PB . The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 2002; 21: 708–718.

    Article  CAS  Google Scholar 

  25. Mhashilkar AM, Stewart AL, Sieger K, Yang HY, Khimani AH, Ito I et al. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther 2003; 8: 207–219.

    Article  CAS  Google Scholar 

  26. Nishikawa T, Munshi A, Story MD, Ismail S, Stevens C, Chada S et al. Adenoviral-mediated mda-7 expression suppresses DNA repair capacity and radiosensitizes non-small-cell lung cancer cells. Oncogene 2004; 23: 7125–7131.

    Article  CAS  Google Scholar 

  27. Pataer A, Vorburger SA, Barber GN, Chada S, Mhashilkar AM, Zou-Yang H et al. Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res 2002; 62: 2239–2243.

    CAS  Google Scholar 

  28. Pataer A, Chada S, Hunt KK, Roth JA, Swisher SG . Adenoviral melanoma differentiation-associated gene 7 induces apoptosis in lung cancer cells through mitochondrial permeability transition-independent cytochrome c release. J Thor Cardiovasc Surg 2003; 125: 1328–1335.

    Article  CAS  Google Scholar 

  29. McKenzie T, Liu Y, Fannale M, Swisher SG, Chada S, Hunt KK . Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells. Surgery 2004; 136: 437–442.

    Article  Google Scholar 

  30. Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D et al. Bystander activity of Ad-mda7: human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther 2004; 10: 1085–1095.

    Article  CAS  Google Scholar 

  31. Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K et al. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res 2003; 63: 5105–5113.

    CAS  Google Scholar 

  32. Chada S, Bocangel D, Ramesh R, Grimm EA, Mumm JB, Mhashilkar AM et al. mda-7/IL-24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: identification of IL-20 receptor-mediated bystander activity against pancreatic cancer. Mol Ther 2005; 11: 724–733.

    Article  CAS  Google Scholar 

  33. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N et al. Intratumoral Injection of INGN241, a non-replicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL-24): biologic outcome in advanced cancer patients. Mol Ther 2005; 11: 160–172.

    Article  CAS  Google Scholar 

  34. Ekmekcioglu S, Ellerhorst J, Mhashilkar AM, Sahin AA, Read CM, Prieto VG et al. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer 2001; 94: 54–59.

    Article  CAS  Google Scholar 

  35. Wheelock MJ, Johnson KR . Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 2003; 19: 207–235.

    Article  CAS  Google Scholar 

  36. Christofori G . Changing neighbors, changing behaviour: cell adhesion molecule-mediated signaling during tumor progression. EMBO J 2003; 22: 2318–2323.

    Article  CAS  Google Scholar 

  37. Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 2001; 20: 7051–7063.

    Article  CAS  Google Scholar 

  38. Christofori G, Semb H . The role of the cell adhesion molecule E-cadherin as a tumor suppressor gene. Trends Biochem Sci 1999; 24: 73–76.

    Article  CAS  Google Scholar 

  39. Arteaga CL, Johnson MD, Todderud G, Coffey RJ, Carpenter G, Page DL . Elevated content of the tyrosine kinase substrate phospholipase C-gamma 1 in primary human breast carcinomas. Proc Natl Acad Sci USA 1991; 88: 10435–10439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Chada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocangel, D., Zheng, M., Mhashilkar, A. et al. Combinatorial synergy induced by adenoviral-mediated mda-7 and Herceptin in Her-2+ breast cancer cells. Cancer Gene Ther 13, 958–968 (2006). https://doi.org/10.1038/sj.cgt.7700972

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700972

Keywords

This article is cited by

Search

Quick links