Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of a gene therapy based bone marrow purging system for leukemias

Abstract

Although viable gene therapy based methods have been reported for the selective removal or purging of contaminating epithelial derived cancer cells from stem cell grafts, similar strategies for the purging of leukemia cells have been significantly less efficient. Hematopoietic cells are difficult targets for transduction with currently available vectors. Polylysine based molecular conjugate vectors (MCV) were previously found to effectively transduce both normal and malignant hematopoietic cells. A panel of human leukemia cell lines as well as CD34+ selected primary human hematopoietic progenitor cells (HPC) were tested for differential gene expression utilizing different promoters. Reporter gene expression under the control of RSV and SV40 promoters showed a 6-log fold increase in leukemia cells when compared to primary HPC. Using a polylysine based recombinant molecular conglomerate vector (recMCV) encoding the HSV-tk suicide gene under control of RSV, we demonstrated effective and specific cell killing in all leukemia cell lines as well as in primary human leukemia cells derived from chemotherapy refractory patients, while HPC survived under the same conditions at approximately 20% viability. These proof of principle experiments demonstrate that gene therapy technology could be utilized to successfully purge leukemia cells from HPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Forman SJ, Blume KG . Allogeneic bone marrow transplantation for acute leukemia. Hematol Oncol Clin N Am. 1990;4:517–533.

    Article  CAS  Google Scholar 

  2. Zittoun RA, Mandelli F, Willemze R, et al. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogeneous leukemia. N Engl J Med. 1994;332:217–223.

    Article  Google Scholar 

  3. Drobyski WR, Ash RC, Casper JT, et al. Effect of T-cell depletion as graft-versus-host disease prophylaxis on engraftment, relapse, and disease-free survival in unrelated marrow transplantation for chronic myelogenous leukemia. Blood. 1994;83:1980–1987.

    CAS  PubMed  Google Scholar 

  4. Kolb HJ, Schmid C, Chen X, et al. Adoptive immunotherapy in chimeras with donor lymphocytes. Acta Haematol. 2003;110:110–120.

    Article  PubMed  Google Scholar 

  5. Gribben JG, Freedman AS, Neuberg D, et al. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med. 1991;325:1525–1533.

    Article  CAS  PubMed  Google Scholar 

  6. Miller CB, Rowlings PA, Zhang MJ, et al. The effect of graft purging with 4-hydroperoxycyclophosphamide in autologous bone marrow transplantation for acute myelogenous leukemia. Exp Hematol. 2001;29:1336–1346.

    Article  CAS  PubMed  Google Scholar 

  7. Feller N, Schuurhuis G, van der Pol M, et al. High percentage of CD34-positive cells in autologous AML peripheral blood stem cell products reflects inadequate in vivo purging and low chemotherapeutic toxicity in a subgroup of patients with poor clinical outcome. Leukemia. 2003;17:68–75.

    Article  CAS  PubMed  Google Scholar 

  8. Vescio R, Schiller G, Stewart AK, et al. Multicenter phase III trial to evaluate CD34(+) selected versus unselected autologous peripheral blood progenitor cell transplantation in multiple myeloma. Blood. 1999;93:1858–1868.

    CAS  PubMed  Google Scholar 

  9. Chen L, Chen D, Manome Y, Dong Y, Fine HA, Kufe DW . Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. J Clin Invest. 1995;96:2775–2782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seth P, Brinkmann U, Schwartz GN, et al. Adenovirus mediated gene transfer to human breast tumor cells: an approach for cancer gene therapy and bone marrow purging. Cancer Res. 1996;56:1346–1351.

    CAS  PubMed  Google Scholar 

  11. Chen L, Pulsipher M, Chen D, et al. Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources. J Clin Invest. 1996;98:2539–2548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwarzenberger P, Huang W, Oliver P, Osidipe T, Theodossiou C, Kolls JK . Poly-L-lysine-based molecular conjugate vectors: a high efficiency gene transfer system for human progenitor and leukemia cells. Am J Med Sci. 2001;321:129–136.

    Article  CAS  PubMed  Google Scholar 

  13. Wattel E, Vanrumbeke M, Abina MA, et al. Differential efficacy of adenoviral mediated gene transfer into cells from hematological cell lines and fresh hematological malignancies. Leukemia. 1996;10:171–174.

    CAS  PubMed  Google Scholar 

  14. Zhong Q, Oliver P, Huang W, et al. Efficient c-kit receptor-targeted gene transfer to primary human CD34-selected hematopoietic stem cells. J Virol. 2001;75:10393–10400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez R, Vereecque R, Wickham TJ, et al. Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells. Hum Gene Ther. 1999;10:2709–2717.

    Article  CAS  PubMed  Google Scholar 

  16. Kolls J, Peppel K, Silvia M, Beutler B . Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene-transfer. PNAS-USA. 1994;91:215–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smythe WR, Hwang HC, Amin KM, et al. Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res. 1994;54:2055–2059.

    CAS  PubMed  Google Scholar 

  18. Jones N, Shenk T . An adenovirus type 5 early gene function regulates expression of other early viral genes. PNAS USA. 1979;76:3665–3669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lei D, Lehmann M, Shellito JE, et al. Nondepleting anti-CD4 antibody treatment prolongs lung-directed E1-deleted adenovirus-mediated gene expression in rats. Hum Gene Ther. 1996;7:2273–2279.

    Article  CAS  PubMed  Google Scholar 

  20. Schwarzenberger P, Hunt JD, Robert E, Theodossiou C, Kolls JK . Receptor-targeted recombinant adenovirus conglomerates: a novel molecular conjugate vector with improved expression characteristics. J Virol. 1997;71:8563–8571.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwarzenberger P, Kolls JK . Molecular conjugate vectors. In: Cid-Arreugi A, Garcia-Carranca A, eds. Viral Vectors. Natick, MA: Eaton; 2000: 171–189.

    Google Scholar 

  22. Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W, Debatin KM . Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci USA. 1999;96:8699–8704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munshi N, Govindarajan R, Drake R, et al. Thymidine kinase (TK) gene-transduced human lymphocytes can be highly purified, remain fully functional, and are killed efficiently with ganciclovir. Blood. 1997;89:1334–1340.

    CAS  PubMed  Google Scholar 

  24. Shibata MA, Morimoto J, Otsuki Y . Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther. 2002;9:16–27.

    Article  CAS  PubMed  Google Scholar 

  25. Zhong Q, Kolls JK, Schwarzenberger P . Retrovirus molecular conjugates. A novel, high transduction efficiency, potentially safety-improved, gene transfer system. J Biol Chem. 2001;276:24601–24607.

    Article  CAS  PubMed  Google Scholar 

  26. Schwarzenberger P, La Russa V, Miller A, et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J Immunol. 1998;161:6383–6389.

    CAS  PubMed  Google Scholar 

  27. Schwarzenberger P, Spence SE, Gooya JM, Michiel DM, Ruscetti FW, Keller JR . Targeted gene transfer to human hematopoietic progenitor cell lines through the c-kit receptor. Blood. 1996;87:472–478.

    CAS  PubMed  Google Scholar 

  28. Skutelsky E, Danon D . Redistribution of surface anionic sites on the luminalfront of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol. 1976;71:232–241.

    Article  CAS  PubMed  Google Scholar 

  29. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparin-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol. 1996;14:1570–1573.

    Article  CAS  PubMed  Google Scholar 

  30. Zarrin AA, Malkin L, Fong I, Luk KD, Ghose A, Berinstein NL . Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochim Biophys Acta. 1999;1446:135–139.

    Article  CAS  PubMed  Google Scholar 

  31. Goodell MA . Introduction: Focus on hematology. CD34(+) or CD34(−): does it really matter? Blood. 1999;94:2545–2547.

    CAS  PubMed  Google Scholar 

  32. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol. 1998;26:353–360.

    CAS  PubMed  Google Scholar 

  33. Brandt JE, Srour EF, van Besien K, Briddell RA, Hoffman R . Cytokine dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J Clin Invest. 1990;86:932–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shpall EJ, Jones RB, Bearman SI . Transplantation of enriched CD34 positive autologous marrow into breast cancer patients following high dose chemotherapy: influence of CD34 positive peripheral blood progenitors and growth factors on engraftment. J Clin Oncol. 1994;12:28–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Translational Research Award # 6191-98 from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schwarzenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Tan, W., Zhong, Q. et al. Development of a gene therapy based bone marrow purging system for leukemias. Cancer Gene Ther 12, 873–883 (2005). https://doi.org/10.1038/sj.cgt.7700848

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700848

Keywords

Search

Quick links