Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of an inducible suicide gene system based on human caspase 8

Abstract

Suicide gene-therapy strategies are promising approaches in treating various diseases such as cancers, atherosclerosis, and graft-versus-host-disease. Here, we describe the development of a new effector gene based on inducing functional caspase 8, the initiator caspase in the death-receptor pathway. We constructed vectors encoding a constitutively active form of human caspase 8 (CC8), and demonstrated the efficient killing of a variety of cell types in transfection and lentivirus-transduction assays. We then analyzed the ability to control the apoptotic activity of a caspase 8-derived construct through the ARIAD™ homodimerization system (FKC8), a system shown to be extremely effective in several cellular models upon retroviral and lentiviral gene transfer. Similarly, two transcription-regulation systems, muristerone-regulated and Tet-On, were tested to control the expression of CC8. The homodimerization-regulated system FKC8 was shown to be the most efficient system with low background activity in noninduced conditions. In the presence of a dimerizer, it was as active as the activated Tet-On system. From our data, we conclude that the dimerizer-dependent human caspase 8 represents a highly inducible and very powerful system to eradicate transduced cell populations. In addition to its application in experimental gene therapy, this variant may be highly useful for mechanistic research related to apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 3
Figure 1
Figure 4
Figure 5

Similar content being viewed by others

References

  1. van Dillen IJ, Mulder NH, Vaalburg W, et al. Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr Gene Ther. 2002;2:307–322.

    Article  CAS  PubMed  Google Scholar 

  2. Tomicic MT, Thust R, Kaina B . Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene. 2002;21:2141–2153.

    Article  CAS  PubMed  Google Scholar 

  3. van der Eb MM, Geutskens SB, van Kuilenburg AB, et al. Ganciclovir nucleotides accumulate in mitochondria of rat liver cells expressing the herpes simplex virus thymidine kinase gene. J Gene Med. 2003;5:1018–1027.

    Article  CAS  PubMed  Google Scholar 

  4. Mullen CA, Anderson L, Woods K, et al. Ganciclovir chemoablation of herpes thymidine kinase suicide gene-modified tumors produces tumor necrosis and induces systemic immune responses. Hum Gene Ther. 1998;9:2019–2030.

    Article  CAS  PubMed  Google Scholar 

  5. Thomis DC, Marktel S, Bonini C, et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood. 2001;97:1249–1257.

    Article  CAS  PubMed  Google Scholar 

  6. Fillat C, Carrio M, Cascante A, et al. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther. 2003;3:13–26.

    Article  CAS  PubMed  Google Scholar 

  7. Shariat SF, Desai S, Song W, et al. Adenovirus-mediated transfer of inducible caspases: a novel "death switch" gene therapeutic approach to prostate cancer. Cancer Res. 2001;61:2562–2571.

    CAS  PubMed  Google Scholar 

  8. Martin DA, Siegel RM, Zheng L, et al. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem. 1998;273:4345–4349.

    Article  CAS  PubMed  Google Scholar 

  9. Clackson T . Controlling mammalian gene expression with small molecules. Curr Opin Chem Biol. 1997;1:210–218.

    Article  CAS  PubMed  Google Scholar 

  10. Spencer DM, Wandless TJ, Schreiber SL, et al. Controlling signal transduction with synthetic ligands. Science. 1993;262:1019–1024.

    Article  CAS  PubMed  Google Scholar 

  11. Spencer DM, Belshaw PJ, Chen L, et al. Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. 1996;6:839–847.

    Article  CAS  PubMed  Google Scholar 

  12. MacCorkle RA, Freeman KW, Spencer DM . Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA. 1998;95:3655–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muzio M, Stockwell BR, Stennicke HR, et al. An induced proximity model for caspase-8 activation. J Biol Chem. 1998;273:2926–2930.

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Chang HY, Baltimore D . Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell. 1998;1:319–325.

    Article  CAS  PubMed  Google Scholar 

  15. Clackson T, Yang W, Rozamus LW, et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA. 1998;95:10437–10442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268:1766–1769.

    Article  CAS  PubMed  Google Scholar 

  17. No D, Yao TP, Evans RM . Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA. 1996;93:3346–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72:9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyoshi H, Blomer U, Takahashi M, et al. Development of a self-inactivating lentivirus vector. J Virol. 1998;72:8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Barry SC, Harder B, Brzezinski M, et al. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther. 2001;12:1103–1108.

    Article  CAS  PubMed  Google Scholar 

  22. Carlotti F, Bazuine M, Kekarainen T, et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther. 2004;9:209–217.

    Article  CAS  PubMed  Google Scholar 

  23. Reiser J, Lai Z, Zhang XY, et al. Development of multigene and regulated lentivirus vectors. J Virol. 2000;74:10589–10599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brustugun OT, Fladmark KE, Doskeland SO, et al. Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death Differ. 1998;5:660–668.

    Article  CAS  PubMed  Google Scholar 

  25. Larregina AT, Morelli AE, Dewey RA, et al. FasL induces Fas/Apo1-mediated apoptosis in human embryonic kidney 293 cells routinely used to generate E1-deleted adenoviral vectors. Gene Ther. 1998;5:563–568.

    Article  CAS  PubMed  Google Scholar 

  26. Kim AH, Khursigara G, Sun X, et al. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol. 2001;21:893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slee EA, Zhu H, Chow SC, et al. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J. 1996;315 (Pt 1):21–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujioka S, Schmidt C, Sclabas GM, et al. Stabilization of p53 is a novel mechanism for proapoptotic function of NF-kappaB. J Biol Chem. 2004;279:27549–27559.

    Article  CAS  PubMed  Google Scholar 

  29. Stamminger T, Fleckenstein B . Immediate-early transcription regulation of human cytomegalovirus. Curr Top Microbiol Immunol. 1990;154:3–19.

    CAS  PubMed  Google Scholar 

  30. Barcia RN, Valle NS, McLeod JD . Caspase involvement in RIP-associated CD95-induced T cell apoptosis. Cell Immunol. 2003;226:78–85.

    Article  CAS  PubMed  Google Scholar 

  31. Whitacre CM, Satoh TH, Xue L, et al. Photodynamic therapy of human breast cancer xenografts lacking caspase-3. Cancer Lett. 2002;179:43–49.

    Article  CAS  PubMed  Google Scholar 

  32. Lazebnik YA, Kaufmann SH, Desnoyers S, et al. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994;371:346–347.

    Article  CAS  PubMed  Google Scholar 

  33. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science. 1998;281:1305–1308.

    Article  CAS  PubMed  Google Scholar 

  34. Grutter MG . Caspases: key players in programmed cell death. Curr Opin Struct Biol. 2000;10:649–655.

    Article  CAS  PubMed  Google Scholar 

  35. Salvesen GS, Dixit VM . Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA. 1999;96:10964–10967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ray CA, Black RA, Kronheim SR, et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell. 1992;69:597–604.

    Article  CAS  PubMed  Google Scholar 

  37. Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science. 1995;269:1885–1888.

    Article  CAS  PubMed  Google Scholar 

  38. Xu G, Cirilli M, Huang Y, et al. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature. 2001;410:494–497.

    Article  CAS  PubMed  Google Scholar 

  39. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–195.

    Article  CAS  PubMed  Google Scholar 

  40. Tschopp J, Irmler M, Thome M . Inhibition of fas death signals by FLIPs. Curr Opin Immunol. 1998;10:552–558.

    Article  CAS  PubMed  Google Scholar 

  41. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21:3704–3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. 2002;277:45162–45171.

    Article  CAS  PubMed  Google Scholar 

  43. Deveraux QL, Reed JC . IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13:239–252.

    Article  CAS  PubMed  Google Scholar 

  44. Deveraux QL, Takahashi R, Salvesen GS, et al. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997;388:300–304.

    Article  CAS  PubMed  Google Scholar 

  45. Yang L, Cao Z, Yan H, et al. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res. 2003;63:6815–6824.

    CAS  PubMed  Google Scholar 

  46. Freundlieb S, Schirra-Muller C, Bujard H . A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med. 1999;1:4–12.

    Article  CAS  PubMed  Google Scholar 

  47. Lamartina S, Roscilli G, Rinaudo CD, et al. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum Gene Ther. 2002;13:199–210.

    Article  CAS  PubMed  Google Scholar 

  48. Urlinger S, Baron U, Thellmann M, et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA. 2000;97:7963–7968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Latta-Mahieu M, Rolland M, Caillet C, et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum Gene Ther. 2002;13:1611–1620.

    Article  CAS  PubMed  Google Scholar 

  50. Xie X, Zhao X, Liu Y, et al. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res. 2001;61:6795–6804.

    CAS  PubMed  Google Scholar 

  51. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell. 2003;11:529–541.

    Article  CAS  PubMed  Google Scholar 

  52. Chang DW, Xing Z, Capacio VL, et al. Interdimer processing mechanism of procaspase-8 activation. EMBO J. 2003;22:4132–4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111:1497–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mallet VO, Mitchell C, Guidotti JE, et al. Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol. 2002;20:1234–1239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FC was supported by a fellowship from the MENRT (Ministère Français de l’Education Nationale, de la Recherche et de la Technologie), and a fellowship from Eurogendis. We are thankful to J Galipeau, MJ Lenardo, M Piechaczyk, V Dixit, JC Chambard, H Bujard, P Friesen, and ARIAD for sharing with us several constructs and reagents used in this study. In addition, we gratefully acknowledge Martijn Rabelink for helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Pognonec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlotti, F., Zaldumbide, A., Martin, P. et al. Development of an inducible suicide gene system based on human caspase 8. Cancer Gene Ther 12, 627–639 (2005). https://doi.org/10.1038/sj.cgt.7700825

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700825

Keywords

This article is cited by

Search

Quick links