Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA

Abstract

Fanconi anemia (FA) is a rare genetic disorder characterized by bone-marrow failure and cellular hypersensitivity to crosslinking agents, including cisplatin. Here, we studied the use of the FA pathway as a possible target for cancer gene therapy with the aim to sensitize tumor cells for cisplatin by interfering with the FA pathway. As proof-of-principle, FA and non-FA lymphoblast-derived tumors were grown subcutaneously in scid mice and treated with two different concentrations of cisplatin. As predicted, the antitumor response was considerably improved in FA tumors. An adenoviral vector encoding a dominant-negative form of FANCA, FANCA600DN, was generated that interfered with endogenous FANCA–FANCG interaction resulting in the disruption of the FA pathway as illustrated by disturbed FANCD2 monoubiquitination. A panel of cell lines, including non-small-cell lung cancer cells, could be sensitized approximately two- to three-fold for cisplatin after Ad.CMV.FANCA600DN infection that may increase upon enhanced infection efficiency. In conclusion, targeting the FA pathway may provide a novel strategy for the sensitization of solid tumors for cisplatin and, in addition, provides a tool for examining the role of the FA pathway in determining chemoresistance in different tumor types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer. 2001;1:130–141.

    Article  CAS  Google Scholar 

  2. Swisher SG, Roth JA, Nemunaitis J, et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst. 1999;91:763–771.

    Article  CAS  Google Scholar 

  3. Rosenberg E, Taher MM, Kuemmerle NB, Farnsworth J, Valerie K . A truncated human xeroderma pigmentosum complementation group A protein expressed from an adenovirus sensitizes human tumor cells to ultraviolet light and cisplatin. Cancer Res. 2001;61:764–770.

    CAS  Google Scholar 

  4. Fanconi G . Familial constitutional panmyelocytopathy, Fanconi's anemia (F.A.). I. Clinical aspects. Semin Hematol. 1967;4:233–240.

    CAS  PubMed  Google Scholar 

  5. Joenje H, Patel KJ . The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet. 2001;2:446–457.

    Article  CAS  Google Scholar 

  6. Ishida R, Buchwald M . Susceptibility of Fanconi's anemia lymphoblasts to DNA-cross-linking and alkylating agents. Cancer Res. 1982;42:4000–4006.

    CAS  Google Scholar 

  7. Auerbach AD, Rogatko A, Schroeder-Kurth TM . International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. Blood. 1989;73:391–396.

    CAS  PubMed  Google Scholar 

  8. Levitus M, Rooimans MA, Steltenpool J, et al. Heterogeneity in Fanconi anemia: evidence for two new genetic subtypes. Blood. 2004;103:2498–2503.

    Article  CAS  Google Scholar 

  9. D’Andrea AD, Grompe M . The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.

    Article  Google Scholar 

  10. Meetei AR, de Winter JP, Medhurst AL, et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet. 2003;35:165–170.

    Article  CAS  Google Scholar 

  11. Positional cloning of the Fanconi Anaemia Group A Gene. The Fanconi anaemia/breast cancer consortium. Nat Genet. 1996;14:324–328.

  12. Lo Ten Foe JR, Rooimans MA, Bosnoyan-Collins L, et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet. 1996;14:320–323.

    Article  CAS  Google Scholar 

  13. de Winter JP, van der Woel L, de Groot J, et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet. 2000;9:2665–2674.

    Article  CAS  Google Scholar 

  14. Medhurst AL, Huber PA, Waisfisz Q, de Winter JP, Mathew CG . Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum Mol Genet. 2001;10:423–429.

    Article  CAS  Google Scholar 

  15. Timmers C, Taniguchi T, Hejna J, et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell. 2001;7:241–248.

    Article  CAS  Google Scholar 

  16. Bogliolo M, Cabre O, Callen E, et al. The Fanconi anaemia genome stability and tumour suppressor network. Mutagenesis. 2002;17:529–538.

    Article  CAS  Google Scholar 

  17. Grompe M, D’Andrea A . Fanconi anemia and DNA repair. Hum Mol Genet. 2001;10:2253–2259.

    Article  CAS  Google Scholar 

  18. Gregory RC, Taniguchi T, D’Andrea AD . Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol. 2003;13:77–82.

    Article  CAS  Google Scholar 

  19. Siddique MA, Nakanishi K, Taniguchi T, Grompe M, D’Andrea AD . Function of the Fanconi anemia pathway in Fanconi anemia complementation group F and D1 cells. Exp Hematol. 2001;29:1448–1455.

    Article  CAS  Google Scholar 

  20. Kruyt FA, Abou-Zahr F, Mok H, Youssoufian H . Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain. J Biol Chem. 1999;274:34212–34218.

    Article  CAS  Google Scholar 

  21. He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–2514.

    Article  CAS  Google Scholar 

  22. van Beusechem VW, van Rijswijk AL, van Es HH, et al. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Therapy. 2000;7:1940–1946.

    Article  CAS  Google Scholar 

  23. Carreau M, Alon N, Bosnoyan-Collins L, Joenje H, Buchwald M . Drug sensitivity spectra in Fanconi anemia lymphoblastoid cell lines of defined complementation groups. Mutat Res. 1999;435:103–109.

    Article  CAS  Google Scholar 

  24. Garcia-Higuera I, Kuang Y, Denham J, D’Andrea AD . The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. Blood. 2000;96:3224–3230.

    CAS  PubMed  Google Scholar 

  25. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy. 2001;8:1347–1353.

    Article  CAS  Google Scholar 

  26. Yu Q, Que LG, Rockey DC . Adenovirus-mediated gene transfer to nonparenchymal cells in normal and injured liver. Am J Physiol Gastrointest Liver Physiol. 2002;282:G565–G572.

    Article  CAS  Google Scholar 

  27. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003;9:568–574.

    Article  CAS  Google Scholar 

  28. Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001;7:249–262.

    Article  CAS  Google Scholar 

  29. Folias A, Matkovic M, Bruun D, et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum Mol Genet. 2002;11:2591–2597.

    Article  CAS  Google Scholar 

  30. Taniguchi T, Garcia-Higuera I, Andreassen PR, et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood. 2002;100:2414–2420.

    Article  CAS  Google Scholar 

  31. Joenje H, Arwert F . Connecting Fanconi anemia to BRCA1. Nat Med. 2001;7:406–407.

    Article  CAS  Google Scholar 

  32. Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297:606–609.

    Article  CAS  Google Scholar 

  33. Kruyt FA, Curiel DT . Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther. 2002;13:485–495.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Netherlands Organization for Scientific Research (NWO), Grant VUA 9-02-21-221. We thank Hans Joenje for providing the VU and EUFA FA lymphoblast cell lines, Bonnie Molenaar for her valuable assistance in performing the in vivo animal experiments and Patrick Bier for affinity purification of the FA antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank AE Kruyt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, M., de Winter, J., Jeroen Mastenbroek, D. et al. Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA. Cancer Gene Ther 11, 539–546 (2004). https://doi.org/10.1038/sj.cgt.7700734

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700734

Keywords

This article is cited by

Search

Quick links