Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stable expression of chimeric anti-CD3 receptors on mammalian cells for stimulation of antitumor immunity

Abstract

Expression of CD80 or CD86 costimulatory molecules on tumor cells can produce rejection of immunogenic but not poorly immunogenic tumors. We have previously shown that anti-CD3 single-chain antibodies expressed on the surface of cells can directly activate T cells. We therefore investigated whether anti-CD3 “receptors” could enhance CD86-mediated rejection of poorly immunogenic tumors. Expression of anti-CD3 receptors on cells was increased by introduction of membrane-proximal “spacer” domains containing glycosylation sites between the single-chain antibody and the transmembrane domain of the chimeric receptors. Removal of glycosylation sites in the spacer reduced surface expression due to increased shedding of chimeric receptors from the cell surface. Induction of T-cell proliferation by anti-CD3 receptors did not correlate with the expression level of chimeric protein, but rather depended on the physical properties of the spacer. Anti-CD3 receptors effectively induced T-cell cytotoxicity, whereas coexpression with CD80 or CD86 was required for generating T-cell proliferation and IL-2 secretion. Although expression of CD86 did not significantly delay the growth of poorly immunogenic B16-F1 tumors, expression of anti-CD3 receptors with CD86 produced complete tumor rejections in 50% of mice and induced significant protection against wild-type B16-F1 tumor cells. Our results show that spacer domains can dramatically influence the surface expression and the biological activity of chimeric antibody receptors. The strong antitumor activity produced by anti-CD3 receptors and CD86 on tumor cells indicates that this strategy may be beneficial for the gene-mediated therapy of poorly immunogenic tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

2C11:

anti-CD3 antibody

γ 1 :

H–CH2–CH3 region of human IgG1

AFP:

alpha fetoprotein

phOx:

4-ethoxymethylene-2-phenyl-2-oxazolin-5-one

scFv:

single-chain antibody

TM:

transmembrane domain

References

  1. Abken H, Hombach A, Heuser C, et al. Tuning tumor-specific T-cell activation: a matter of costimulation? Trends Immunol. 2002;23:240–245.

    Article  CAS  Google Scholar 

  2. McHugh RS, Ahmed SN, Wang YC, et al. Construction, purification, and functional incorporation on tumor cells of glycolipid-anchored human B7-1 (CD80). Proc Natl Acad Sci USA. 1995;92:8059–8063.

    Article  CAS  Google Scholar 

  3. Freeman GJ, Borriello F, Hodes RJ, et al. Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med. 1993;178:2185–2192.

    Article  CAS  Google Scholar 

  4. Lenschow DJ, Walunas TL, Bluestone JA . CD28/B7 system of T cell costimulation. Ann Rev Immunol. 1996;14:233–258.

    Article  CAS  Google Scholar 

  5. Hayakawa M, Kawaguchi S, Ishii S, et al. B7-1-transfected tumor vaccine counteracts chemotherapy-induced immunosuppression and prolongs the survival of rats bearing highly metastatic osteosarcoma cells. Int J Cancer. 1997;71:1091–1102.

    Article  CAS  Google Scholar 

  6. Martin BK, Frelinger JG, Ting JP . Combination gene therapy with CD86 and the MHC class II transactivator in the control of lung tumor growth. J Immunol. 1999;162:6663–6670.

    CAS  PubMed  Google Scholar 

  7. Fujii H, Inobe M, Kimura F, et al. Vaccination of tumor cells transfected with the B7-1 (CD80) gene induces the anti-metastatic effect and tumor immunity in mice. Int J Cancer. 1996;66:219–224.

    Article  CAS  Google Scholar 

  8. Korkolopoulou P, Kaklamanis L, Pezzella F, et al. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J Cancer. 1996;73:148–153.

    Article  CAS  Google Scholar 

  9. Luboldt HJ, Kubens BS, Rubben H, et al. Selective loss of human leukocyte antigen class I allele expression in advanced renal cell carcinoma. Cancer Res. 1996;56:826–830.

    CAS  PubMed  Google Scholar 

  10. Kaklamanis L, Townsend A, Doussis Anagnostopoulou IA, et al. Loss of major histocompatibility complex-encoded transporter associated with antigen presentation (TAP) in colorectal cancer. Am J Pathol. 1994;145:505–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vitale M, Rezzani R, Rodella L, et al. HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res. 1998;58:737–742.

    CAS  PubMed  Google Scholar 

  12. Restifo NP, Marincola FM, Kawakami Y, et al. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88:100–108.

    Article  CAS  Google Scholar 

  13. Paul DB, Barth RF, Yang W, et al. B7.1 expression by the weakly immunogenic F98 rat glioma does not enhance immunogenicity. Gene Therapy. 2000;7:993–999.

    Article  CAS  Google Scholar 

  14. Chen L, McGowan P, Ashe S, et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med. 1994;179:523–532.

    Article  CAS  Google Scholar 

  15. Liao KW, Lo YC, Roffler SR . Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells. Gene Therapy. 2000;7:339–347.

    Article  CAS  Google Scholar 

  16. Paul S, Regulier E, Poitevin Y, et al. The combination of a chemokine, cytokine and TCR-based T cell stimulus for effective gene therapy of cancer. Cancer Immunol Immunother. 2002;51:645–654.

    Article  CAS  Google Scholar 

  17. Paul S, Regulier E, Rooke R, et al. Tumor gene therapy by MVA-mediated expression of T-cell-stimulating antibodies. Cancer Gene Ther. 2002;9:470–477.

    Article  CAS  Google Scholar 

  18. Liao KW, Chou WC, Lo YC, et al. Design of transgenes for efficient expression of active chimeric proteins on mammalian cells. Biotechnol Bioeng. 2001;73:313–323.

    Article  CAS  Google Scholar 

  19. Chou WC, Liao KW, Lo YC, et al. Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells. Biotechnol Bioeng. 1999;65:160–169.

    Article  CAS  Google Scholar 

  20. Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419:734–738.

    Article  CAS  Google Scholar 

  21. Reddy P, Caras I, Krieger M . Effects of O-linked glycosylation on the cell surface expression and stability of decay-accelerating factor, a glycophospholipidanchored membrane protein. J Biol Chem. 1989;264:17329–17336.

    CAS  PubMed  Google Scholar 

  22. Ludwig A, Ehlert JE, Flad HD, et al. Identification of distinct surface-expressed and intracellular CXC-chemokine receptor 2 glycoforms in neutrophils: N-glycosylation is essential for maintenance of receptor surface expression. J Immunol. 2000;165:1044–1052.

    Article  CAS  Google Scholar 

  23. Workman P, Twentyman P, Balkwill F, et al. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia (Second Edition). Br J Cancer. 1998;77:1–10.

    Google Scholar 

  24. de Ines C, Cochlovius B, Schmidt S, et al. Apoptosis of a human melanoma cell line specifically induced by membrane-bound single-chain antibodies. J Immunol. 1999;163:3948–3956.

    CAS  PubMed  Google Scholar 

  25. Winberg G, Grosmaire LS, Klussman K, et al. Surface expression of CD28 single chain Fv for costimulation by tumor cells. Immunol Rev. 1996;153:209–223.

    Article  CAS  Google Scholar 

  26. Ye Z, Hellstrom I, Hayden-Ledbetter M, et al. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med. 2002;8:343–348.

    Article  CAS  Google Scholar 

  27. Hwang KW, Sweatt WB, Brown IE, et al. Cutting edge: targeted ligation of CTLA-4 in vivo by membrane-bound anti-CTLA-4 antibody prevents rejection of allogeneic cells. J Immunol. 2002;169:633–637.

    Article  CAS  Google Scholar 

  28. Graf MR, Jadus MR, Hiserodt JC, et al. Development of systemic immunity to glioblastoma multiforme using tumor cells genetically engineered to express the membrane-associated isoform of macrophage colony-stimulating factor. J Immunol. 1999;163:5544–5551.

    CAS  PubMed  Google Scholar 

  29. Nagarajan S, Selvaraj P . Glycolipid-anchored IL-12 expressed on tumor cell surface induces antitumor immune response. Cancer Res. 2002;62:2869–2874.

    CAS  PubMed  Google Scholar 

  30. Marais R, Spooner RA, Stribbling SM, et al. A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nat Biotechnol. 1997;15:1373–1377.

    Article  CAS  Google Scholar 

  31. Stabila PF, Wong SC, Kaplan FA, et al. Cell surface expression of a human IgG Fc chimera activates macrophages through Fc receptors. Nat Biotechnol. 1998;16:1357–1360.

    Article  CAS  Google Scholar 

  32. Gruel N, Fridman WH, Teillaud JL . Bypassing tumor-specific and bispecific antibodies: triggering of antitumor immunity by expression of anti-Fc gammaR scFv on cancer cell surface. Gene Therapy. 2001;8:1721–1728.

    Article  CAS  Google Scholar 

  33. Blochberger TC, Sabatine JM, Lee YC, et al. O-linked glycosylation of rat renal gamma-glutamyltranspeptidase adjacent to its membrane anchor domain. J Biol Chem. 1989; 264: 20718–20722.

    CAS  PubMed  Google Scholar 

  34. Arribas J, Coodly L, Vollmer P, et al. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem. 1996;271:11376–11382.

    Article  CAS  Google Scholar 

  35. Mullberg J, Rauch CT, Wolfson MF, et al. Further evidence for a common mechanism for shedding of cell surface proteins. FEBS Lett. 1997;401:235–238.

    Article  CAS  Google Scholar 

  36. Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol. 2001;153:893–904.

    Article  CAS  Google Scholar 

  37. Wedrychowski A, Kim YW, Chang TW . Immune enhancers composed of polyvalent binding sites of anti-CD3 antibodies. Biotechnology (NY). 1993;11:486–489.

    CAS  Google Scholar 

  38. Hirsch R, Bluestone JA, DeNenno L, et al. Anti-CD3 F(ab′)2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb. Transplantation. 1990;49:1117–1123.

    Article  CAS  Google Scholar 

  39. Vossen AC, Tibbe GJ, Kroos MJ, et al. Fc receptor binding of anti-CD3 monoclonal antibodies is not essential for immunosuppression, but triggers cytokine-related side effects. Eur J Immunol. 1995;25:1492–1496.

    Article  CAS  Google Scholar 

  40. Anton van der Merwe P, Davis SJ, Shaw AS, et al. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol. 2000;12:5–21.

    Article  CAS  Google Scholar 

  41. van der Merwe PA . The TCR triggering puzzle. Immunity. 2001;14:665–668.

    Article  CAS  Google Scholar 

  42. Seliger B, Cabrera T, Garrido F, et al. HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol. 2002;12:3–13.

    Article  CAS  Google Scholar 

  43. Ochsenbein AF, Sierro S, Odermatt B, et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature. 2001;411:1058–1064.

    Article  CAS  Google Scholar 

  44. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9:279–286.

    Article  CAS  Google Scholar 

  45. Surman DR, Dudley ME, Overwijk WW, et al. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol. 2000;164:562–565.

    Article  CAS  Google Scholar 

  46. Bowman L, Grossmann M, Rill D, et al. IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood. 1998;92:1941–1949.

    CAS  PubMed  Google Scholar 

  47. Schneeberger A, Koszik F, Schmidt W, et al. The tumorigenicity of IL-2 gene-transfected murine M-3D melanoma cells is determined by the magnitude and quality of the host defense reaction: NK cells play a major role. J Immunol. 1999;162:6650–6657.

    CAS  PubMed  Google Scholar 

  48. Schoenberger SP, Toes RE, van der Voort EI, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature. 1998;393:480–483.

    Article  CAS  Google Scholar 

  49. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–478.

    Article  CAS  Google Scholar 

  50. Bourgeois C, Rocha B, Tanchot C . A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 2002;297:2060–2063.

    Article  CAS  Google Scholar 

  51. Huang AY, Golumbek P, Ahmadzadeh M, et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science. 1994;264:961–965.

    Article  CAS  Google Scholar 

  52. Bai XF, Gao JX, Liu J, et al. On the site and mode of antigen presentation for the initiation of clonal expansion of CD8 T cells specific for a natural tumor antigen. Cancer Res. 2001;61:6860–6867.

    CAS  PubMed  Google Scholar 

  53. thor Straten P, Becker JC, Guldberg P, et al. In situ T cells in melanoma. Cancer Immunol Immunother. 1999;48:386–395.

    Article  CAS  Google Scholar 

  54. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854.

    Article  CAS  Google Scholar 

  55. Bloom MB, Perry-Lalley D, Robbins PF, et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med. 1997;185:453–459.

    Article  CAS  Google Scholar 

  56. Perricone MA, Claussen KA, Smith KA, et al. Immunogene therapy for murine melanoma using recombinant adenoviral vectors expressing melanoma-associated antigens. Mol Ther. 2000;1:275–284.

    Article  CAS  Google Scholar 

  57. Seliger B, Wollscheid U, Momburg F, et al. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res. 2001;61:1095–1099.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the technical assistance of Wesley Roy Balasubramanian. This study was supported by grants from the National Science Council, Taipei, Taiwan (NSC90-2318-B001-006-M51 and NSC91-3112-P001-026-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve R Roffler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, KW., Chen, BM., Liu, TB. et al. Stable expression of chimeric anti-CD3 receptors on mammalian cells for stimulation of antitumor immunity. Cancer Gene Ther 10, 779–790 (2003). https://doi.org/10.1038/sj.cgt.7700637

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700637

Keywords

This article is cited by

Search

Quick links