Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combined suicide gene therapy for pancreatic peritoneal carcinomatosis using BGTC liposomes

Abstract

Peritoneal dissemination is a common end-stage complication of pancreatic cancer for which novel therapeutic modalities are actively investigated, as there is no current effective therapy. Thus, we evaluated, in a mouse model of pancreatic peritoneal carcinomatosis, the therapeutic potential of a novel nonviral gene therapy approach consisting of bis-guanidinium-tren-cholesterol (BGTC)-mediated lipofection of a combined suicide gene system. Human BxPC-3 pancreatic cells secreting the carcinoembryonic antigen (CEA) tumor marker were injected into the peritoneal cavity of nude mice. After 8 days, intraperitoneal (i.p.) lipofection was performed using BGTC/DOPE cationic liposomes complexed with plasmids encoding the two prodrug-activating enzymes Herpes Simplex Virus thymidine kinase and Escherichia coli cytosine deaminase, the latter being expressed from a bicistronic cassette also encoding E. coli uracil phosphoribosyltransferase. Administration of the lipoplexes was followed by treatment with the corresponding prodrugs ganciclovir and 5-fluorocytosine. The results presented herein demonstrate that BGTC/DOPE liposomes can efficiently mediate gene transfection into peritoneal tumor nodules. Indeed, HSV-TK mRNA was detected in tumor nodule tissues by semiquantitative reverse transcription-polymerase chain reaction analysis. In addition, green fluorescent protein (GFP) fluorescence and X-gal staining were observed in the peritoneal tumor foci following lipofection of the corresponding EGFP and LacZ reporter genes. These expression analyses also showed that transgene expression lasted for about 2 weeks and was preferential for the tumor nodules, this tumor preference being in good agreement with the absence of obvious treatment-related toxicity. Most importantly, mice receiving the full treatment scheme (BGTC liposomes, suicide genes and prodrugs) had significantly lower serum CEA levels than those of the various control groups, a finding indicating that peritoneal carcinomatosis progression was strongly reduced in these mice. In conclusion, our results demonstrate the therapeutic efficiency of BGTC-mediated i.p. lipofection of a combined suicide gene system in a mouse peritoneal carcinomatosis model and suggest that BGTC-based prodrug-activating gene therapy approaches may constitute a potential treatment modality for patients with peritoneal carcinomatosis and minimal residual disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahlgren JD . Epidemiology and risk factors in pancreatic cancer. Semin Oncol. 1996;23:241–250.

    CAS  PubMed  Google Scholar 

  2. Anderson KE, Potter JD, Mack TM . Pancreatic cancer. In: Schottenfeld D, Fraumani JF, eds. Cancer Epidemiology and Prevention. New York, NY: Oxford University Press; 2nd edn. 1996; pp. 725–771.

    Google Scholar 

  3. Sperti C, Pasquali C, Piccoli A, Pedrazzoli S . Survival after resection for ductal adenocarcinoma of the pancreas. Br J Surg. 1996;83:625–631.

    Article  CAS  PubMed  Google Scholar 

  4. Beger HG, Gansauge F, Leder G . Pancreatic cancer: who benefits from curative resection? Can J Gastroenterol. 2002;16:117–120.

    Article  PubMed  Google Scholar 

  5. Bramhall SR, Neoptolemos JP . Adjuvant chemotherapy in pancreatic cancer. Int J Pancreatol. 1997;21:59–63.

    CAS  PubMed  Google Scholar 

  6. Johnson C . Prognosis in pancreatic cancer. Lancet. 1997;349:1027–1028.

    Article  CAS  PubMed  Google Scholar 

  7. Graziano F, Catalano G, Cascinu S . Chemotherapy for advanced pancreatic cancer: the history is changing. Tumori. 1998;84:308–311.

    Article  CAS  PubMed  Google Scholar 

  8. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ . Targeting gene therapy to cancer: a review. Oncol Res. 1997;9:313–325.

    CAS  PubMed  Google Scholar 

  9. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89:21–39.

    Article  CAS  PubMed  Google Scholar 

  10. Curiel DT, Gerritsen WR, Krul MR . Progress in cancer gene therapy. Cancer Gene Ther. 2000;7:1197–1199.

    Article  CAS  PubMed  Google Scholar 

  11. Halloran CM, Ghaneh P, Neoptolemos JP, Costello E . Gene therapy for pancreatic cancer: current and prospective strategies. Surg Oncol. 2000;9:181–191.

    Article  CAS  PubMed  Google Scholar 

  12. Wadhwa PD, Zielske SP, Roth JC, Ballas CB, Bowman JE, Gerson SL . Cancer gene therapy: scientific basis. Annu Rev Med. 2002;53:437–452.

    Article  CAS  PubMed  Google Scholar 

  13. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: a paradigm for a prospective cancer control strategy. Cancer Res. 1986;46:5276–5281.

    CAS  PubMed  Google Scholar 

  14. Bridgewater JA, Springer CJ, Knox RJ, Minton NP, Michael NP, Collins MK . Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer. 1995;31A:2362–2370.

    Article  CAS  PubMed  Google Scholar 

  15. Marais R, Spooner RA, Light Y, Martin J, Springer CJ . Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res. 1996;56:4735–4742.

    CAS  PubMed  Google Scholar 

  16. Aghi M, Hochberg F, Breakefield XO . Prodrug activation enzymes in cancer gene therapy. J Gene Med. 2000;2:148–164.

    Article  CAS  PubMed  Google Scholar 

  17. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy. J Clin Invest. 2000;105:1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sandalon Z, Fusenig NE, McCutcheon J, Taichman LB, Garlick JA . Suicide gene therapy for premalignant disease: a new strategy for the treatment of intraepithelial neoplasia. Gene Therapy. 2001;8:232–238.

    Article  CAS  PubMed  Google Scholar 

  19. Rogulski KR, Kim JH, Kim SH, Freytag SO . Glioma cells transduced with an Escherichia coli CD/HSV1-TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther. 1997;8:73–85.

    Article  CAS  PubMed  Google Scholar 

  20. Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA . Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst. 1998;90:370–380.

    Article  CAS  PubMed  Google Scholar 

  21. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther. 1998;9:1323–1333.

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Huang L . Cationic liposome-mediated gene transfer. Gene Therapy. 1995;2:710–722.

    CAS  PubMed  Google Scholar 

  23. Ledley FD . Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther. 1995;6:1129–1144.

    Article  CAS  PubMed  Google Scholar 

  24. Lehn P, Fabrega S, Oudrhiri N, Navarro J . Gene delivery systems: bridging the gap between recombinant viruses and artificial vectors. Adv Drug Deliv Rev. 1998;30:5–11.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Huang L . Nonviral gene therapy: promises and challenges. Gene Therapy. 2000;7:31–34.

    Article  CAS  PubMed  Google Scholar 

  26. Pedroso DE, Lima MC, Simoes S, Pires P, Faneca H, Düzgünes N . Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev. 2001;47:277–294.

    Article  Google Scholar 

  27. Zuber G, Dauty E, Nothisen M, Belguise P, Behr JP . Towards synthetic viruses. Adv Drug Deliv Rev. 2001;52:245–253.

    Article  CAS  PubMed  Google Scholar 

  28. Miller AD . Cationic liposomes for gene therapy. Angew Chem Int Ed. 1998;37:1768–1785.

    Article  Google Scholar 

  29. Aoki K, Yoshida T, Matsumoto N, et al. Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther. 1997;8:1105–1113.

    Article  CAS  PubMed  Google Scholar 

  30. Vigneron JP, Oudrhiri N, Fauquet M, et al. Guanidinium-cholesterol lipids: efficient vectors for the transfection of eukaryotic cells. Proc Natl Acad Sci USA. 1996;94:9682–9686.

    Article  Google Scholar 

  31. Oudrhiri N, Vigneron JP, Hauchecorne M, et al. Guanidinium-cholesterol cationic lipids: novel reagents for gene transfection and perspectives for gene therapy. Biogenic Amines. 1998;14:537–552.

    CAS  Google Scholar 

  32. Aissaoui A, Oudrhiri N, Petit L, et al. Progress in gene delivery by cationic lipids: guanidinium-cholesterol-based systems as an example. Curr Drug Targets. 2002;3:1–16.

    Article  CAS  PubMed  Google Scholar 

  33. Oudrhiri N, Vigneron JP, Peuchmaur M, Leclerc T, Lehn JM, Lehn P . Gene transfer by guanidinium-cholesterol cationic lipids into airway epithelial cells in vitro and in vivo. Proc Natl Acad Sci USA. 1997;94:1651–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pitard B, Oudrhiri N, Lambert O, et al. Sterically stabilized BGTC-based lipoplexes: structural features and gene transfection into the mouse airways in vivo. J Gene Med. 2001;3:478–487.

    Article  CAS  PubMed  Google Scholar 

  35. Kawamura K, Tasaki K, Hamada H, Takenaga K, Sakiyama S, Tagawa M . Expression of Escherichia coli uracil phosphoribosyltransferase gene in murine colon carcinoma cells augments the antitumoral effect of 5-fluorouracil and induces protective immunity. Cancer Gene Ther. 2000;7:637–643.

    Article  CAS  PubMed  Google Scholar 

  36. Patel M, Vivien E, Hauchecorne M, et al. Efficient gene transfection by bisguanylated diacetylene lipid formulations. Biochem Biophys Res Commun. 2001;281:536–543.

    Article  CAS  PubMed  Google Scholar 

  37. Scheule RK, Cheng SH . Gene transfer into mammalian cells using synthetic cationic lipids. In: Felgner PL, Heller MJ, Lehn P, Behr JP, Szoka FC, eds. Artificial Self-Assembling Systems for Gene Delivery. Washington, DC: American Chemical Society; 1996: 177–190.

    Google Scholar 

  38. Floch V, Legros N, Loisel S, et al. New biocompatible cationic amphiphiles derivatives from glycine betaine: a novel family of efficient nonviral gene transfer agents. Biochem Biophys Res Commun. 1998;251:360–365.

    Article  CAS  PubMed  Google Scholar 

  39. Belmont P, Aissaoui A, Hauchecorne M, et al. Aminoglycoside-derived cationic lipids as efficient vectors for gene transfection in vitro and in vivo. J Gene Med. 2002;4:517–526.

    Article  CAS  PubMed  Google Scholar 

  40. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kichler A, Leborgne C, Coeytaux E, Danos O . Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med. 2001;3:135–144.

    Article  CAS  PubMed  Google Scholar 

  42. Wightman L, Kircheis R, Rössler V, et al. Different behavior of branched and linear polyethylmenimine for gene delivery in vitro and in vivo. J Gene Med. 2001;3:362–372.

    Article  CAS  PubMed  Google Scholar 

  43. Haack K, Linnebacher M, Eisold S, et al. Induction of protective immunity against syngeneic rat cancer cells by expression of the cytosine deaminase suicide gene. Cancer Gene Ther. 2000;7:1357–1364.

    Article  CAS  PubMed  Google Scholar 

  44. Wack S, Hajri A, Heisel F, et al. Feasibility, sensitivity, and reliability of laser-induced fluorescence imaging of green fluorescent protein-expressing tumors in vivo. Mol Ther. 2003;7:765–773.

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman DM, Figlin RA . Intratumoral interleukin 2 for renal-cell carcinoma by direct gene transfer of a plasmid DNA/DMRIE/DOPE lipid complex. World J Urol. 2000;18:152–156.

    Article  CAS  PubMed  Google Scholar 

  46. Kim R, Minami K, Nishimoto N, Toge T . Enhancement of antitumor effect by intratumoral administration of bax gene in combination with anticancer drugs in gastric cancer. Int J Oncol. 2001;18:363–367.

    CAS  PubMed  Google Scholar 

  47. Ramesh R, Saeki T, Templeton NS, et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther. 2001;3:337–350.

    Article  CAS  PubMed  Google Scholar 

  48. Stopeck AT, Jones A, Hersh EM, et al. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA–liposome complex, in patients with metastatic melanoma. Clin Cancer Res. 2001;7:2285–2291.

    CAS  PubMed  Google Scholar 

  49. Reimer DL, Kong S, Monck M, Wyles J, Tam P, Wasan EK, Bally MB . Liposomal lipid and plasmid DNA delivery to B16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates. J Pharmacol Exp Ther. 1999;289:807–815.

    CAS  PubMed  Google Scholar 

  50. Aoki K, Furuhata S, Hatanaka K, et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Therapy. 2001;8:508–514.

    Article  CAS  PubMed  Google Scholar 

  51. Pitard B, Oudrhiri N, Vigneron JP, Hauchecorne M, Aguerre O, Toury R, Airiau M, Ramasawmy R, Scherman D, Crouzet J, Lehn JM, Lehn P . Structural characteristics of supramolecular assemblies formed by guanidinium-cholesterol reagents for gene transfection. Proc Natl Acad Sci USA. 1999;96:2621–2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang C, O'connor SP, Fang SL, et al. Efficiency of cationic lipid-mediated transfection of polarized and differentiated airway epithelial cells in vitro and in vivo. Hum Gene Ther. 1998;9:1531–1542.

    Article  CAS  PubMed  Google Scholar 

  53. Fasbender A, Zabner J, Zeiher BG, Welsh MJ . A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Therapy. 1997;4:1173–1180.

    Article  CAS  PubMed  Google Scholar 

  54. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E . Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy. 2000;7:401–407.

    Article  CAS  PubMed  Google Scholar 

  55. Nagy HJ, Panis Y, Fabre M, et al. Efficient suicide gene therapy of transduced and distant untransduced ovary tumors is correlated with significant increase of intratumoral T and NK cells. Biomed Pharmacother.. 2000;54:479–486.

    Article  CAS  PubMed  Google Scholar 

  56. Kanai F, Kawakami T, Hamada H, et al. Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res. 1998;58:1946–1951.

    CAS  PubMed  Google Scholar 

  57. Kuriyama S, Mitoro A, Yamazaki M, et al. Comparison of gene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma. Scand J Gastroenterol. 1999;34:1033–1041.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Association pour la Recherche sur le Cancer (ARC, Villejuif, France) and Institut de Recherche sur le Cancer de l'Appareil Digestif (IRCAD, Strasbourg, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amor Hajri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajri, A., Wack, S., Lehn, P. et al. Combined suicide gene therapy for pancreatic peritoneal carcinomatosis using BGTC liposomes. Cancer Gene Ther 11, 16–27 (2004). https://doi.org/10.1038/sj.cgt.7700628

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700628

Keywords

This article is cited by

Search

Quick links