Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase

Abstract

We have constructed a retroviral bicistronic vector, MFG/GID, that transduces the expression of both the A3 isoform of the rat glutathione S-transferase (GST A3), and the tyr-22 variant of the human dihydrofolate reductase (DHFRL22Y). Transduction of murine 3T3 fibroblasts with this vector increased their in vitro resistance to chlorambucil (1.8-fold) and trimetrexate (TMTX) (748-fold). TMTX selection of a mixed population of 20% GID-transduced NIH 3T3 cells and 80% control cells resulted in a marked increase in the GST peroxidase activity associated with the GST A3 isoform (17.7-fold). MFG/GID-transduced primary clonogenic murine hematopoietic progenitor cells were likewise more resistant to TMTX and chlorambucil than control β-gal-transduced cells. Selecting GID-transduced hematopoietic cells with a combination of TMTX and a nucleoside transport inhibitor resulted in a marked increase in resistance upon re-exposure to TMTX (99% survival). Similarly, GID-transduced hematopoietic cells selected with TMTX were more resistant to chlorambucil, with 40% survival at a drug concentration that killed practically all control cells. These results suggest that antifolate-mediated selection of MFG/GID-transduced hematopoietic cells could be used as a mean to enrich the population of transduced cells prior to or following transplantation, thus potentially conferring in vivo chemoprotection to nitrogen mustards and antifolates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sorrentino BP, McDonagh KT, Woods D, et al. Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood. 1995;86:491–501.

    CAS  PubMed  Google Scholar 

  2. Licht T, Aksentijevich I, Gottesman MM, et al. Efficient expression of functional human MDR1 gene in murine bone marrow after retroviral transduction of purified hematopoietic stem cells. Blood. 1995;86:111–121.

    CAS  PubMed  Google Scholar 

  3. Carpinteiro A, Peinert S, Ostertag W, et al. Genetic protection of repopulating hematopoietic cells with an improved MDR1-retrovirus allows administration of intensified chemotherapy following stem cell transplantation in mice. Int J Cancer. 2002;98:785–792.

    Article  CAS  Google Scholar 

  4. Machiels JP, Govaerts AS, Guillaume T, et al. Retrovirus-mediated gene transfer of the human multidrug resistance-associated protein into hematopoietic cells protects mice from chemotherapy-induced leukopenia. Hum Gene Ther. 1999;10:801–811.

    Article  CAS  Google Scholar 

  5. Zhao SC, Li MX, Banerjee D, et al. Long-term protection of recipient mice from lethal doses of methotrexate by marrow infected with a double-copy vector retrovirus containing a mutant dihydrofolate reductase. Cancer Gene Ther. 1994;1:27–33.

    CAS  PubMed  Google Scholar 

  6. Spencer HT, Sleep SE, Rehg JE, et al. A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood. 1996;87:2579–2587.

    CAS  PubMed  Google Scholar 

  7. Matsunaga T, Sakamaki S, Kuga T, et al. GST-pi gene-transduced hematopoietic progenitor cell transplantation overcomes the bone marrow toxicity of cyclophosphamide in mice. Hum Gene Ther. 2000;11:1671–1681.

    Article  CAS  Google Scholar 

  8. Maze R, Kapur R, Kelley MR, et al. Reversal of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced severe immunodeficiency by transduction of murine long-lived hemopoietic progenitor cells using O6-methylguanine DNA methyltransferase complementary DNA. J Immunol. 1997;158:1006–1013.

    CAS  PubMed  Google Scholar 

  9. Davis BM, Reese JS, Koc ON, et al. Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 1997;57:5093–5099.

    CAS  PubMed  Google Scholar 

  10. Harris LC, Marathi UK, Edwards CC, et al. Retroviral transfer of a bacterial alkyltransferase gene into murine bone marrow protects against chloroethylnitrosourea cytotoxicity. Clin Cancer Res. 1995;1:1359–1368.

    CAS  PubMed  Google Scholar 

  11. Jedlitschky G, Leier I, Buchholz U, et al. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. 1996;56:988–994.

    CAS  PubMed  Google Scholar 

  12. Barnouin K, Leier I, Jedlitschky G, et al. Multidrug resistance protein-mediated transport of chlorambucil and melphalan conjugated to glutathione. Br J Cancer. 1998;77:201–209.

    Article  CAS  Google Scholar 

  13. Mannervik B, Jensson H . Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol. J Biol Chem. 1982;257:9909–9912.

    CAS  PubMed  Google Scholar 

  14. Hengstler JG, Bottger T, Tanner B, et al. Resistance factors in colon cancer tissue and the adjacent normal colon tissue: glutathione S-transferases alpha and pi, glutathione and aldehyde dehydrogenase. Cancer Lett. 1998;128:105–112.

    Article  CAS  Google Scholar 

  15. Ribrag V, Massade L, Faussat AM, et al. Drug resistance mechanisms in chronic lymphocytic leukemia. Leukemia. 1996;10:1944–1949.

    CAS  PubMed  Google Scholar 

  16. Sargent JM, Williamson C, Hall AG, et al. Evidence for the involvement of the glutathione pathway in drug resistance in AML. Adv Exp Med Biol. 1999;457:205–209.

    Article  CAS  Google Scholar 

  17. Kodera Y, Isobe K, Yamauchi M, et al. Expression of glutathione-S-transferases alpha and pi in gastric cancer: a correlation with cisplatin resistance. Cancer Chemother Pharmacol. 1994;34:203–208.

    Article  CAS  Google Scholar 

  18. Buller AL, Clapper ML, Tew KD . Glutathione S-transferases in nitrogen mustard-resistant and -sensitive cell lines. Mol Pharmacol. 1987;31:575–578.

    CAS  PubMed  Google Scholar 

  19. Clapper ML, Kuzmich S, Seestaller LM, et al. Time course of glutathione S-transferase elevation in Walker mammary carcinoma cells following chlorambucil exposure. Biochem Pharmacol. 1993;45:683–690.

    Article  CAS  Google Scholar 

  20. Murray GI, Taylor VE, McKay JA, et al. The immunohistochemical localization of drug-metabolizing enzymes in prostate cancer. J Pathol. 1995;177:147–152.

    Article  CAS  Google Scholar 

  21. Raha A, Tew KD . Glutathione S-transferases. Cancer Treat Res. 1996;87:83–122.

    Article  CAS  Google Scholar 

  22. Schecter RL, Alaoui-Jamali MA, Woo A, et al. Expression of a rat glutathione-S-transferase complementary DNA in rat mammary carcinoma cells: impact upon alkylator-induced toxicity. Cancer Res. 1993;53:4900–4906.

    CAS  PubMed  Google Scholar 

  23. Black SM, Beggs JD, Hayes JD, et al. Expression of human glutathione S-transferases in Saccharomyces cerevisiae confers resistance to the anticancer drugs adriamycin and chlorambucil. Biochem J. 1990;268:309–315.

    Article  CAS  Google Scholar 

  24. Moscow JA, Townsend AJ, Cowan KH . Elevation of pi class glutathione S-transferase activity in human breast cancer cells by transfection of the GST pi gene and its effect on sensitivity to toxins. Mol Pharmacol. 1989;36:22–28.

    CAS  PubMed  Google Scholar 

  25. Puchalski RB, Fahl WE . Expression of recombinant glutathione S-transferase pi, Ya, or Yb1 confers resistance to alkylating agents. Proc Natl Acad Sci USA. 1990;87:2443–2447.

    Article  CAS  Google Scholar 

  26. Letourneau S, Greenbaum M, Cournoyer D . Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers in vitro resistance to alkylating agents in human leukemia cells and in clonogenic mouse hematopoietic progenitor cells. Hum Gene Ther. 1996;7:831–840.

    Article  CAS  Google Scholar 

  27. Greenbaum M, Letourneau S, Assar H, et al. Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers alkylating drug resistance in NIH 3T3 mouse fibroblasts. Cancer Res. 1994;54:4442–4447.

    CAS  PubMed  Google Scholar 

  28. Abonour R, Williams DA, Einhorn L, et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med. 2000;6:652–658.

    Article  CAS  Google Scholar 

  29. Allay JA, Galipeau J, Blakley RL, et al. Retroviral vectors containing a variant dihydrofolate reductase gene for drug protection and in vivo selection of hematopoietic cells. Stem Cells. 1998;16(Suppl 1):223–233.

    PubMed  Google Scholar 

  30. Hanania EG, Giles RE, Kavanagh J, et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc Natl Acad Sci USA. 1996;93:15346–15351.

    Article  CAS  Google Scholar 

  31. Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol. 1998;16:165–172.

    Article  CAS  Google Scholar 

  32. Cowan KH, Moscow JA, Huang H, et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res. 1999;5:1619–1628.

    CAS  PubMed  Google Scholar 

  33. Moscow JA, Huang H, Carter C, et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood. 1999;94:52–61.

    CAS  PubMed  Google Scholar 

  34. Flasshove M, Banerjee D, Mineishi S, et al. Ex vivo expansion and selection of human CD34+ peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene transfer. Blood. 1995;85:566–574.

    CAS  PubMed  Google Scholar 

  35. Flasshove M, Banerjee D, Leonard JP, et al. Retroviral transduction of human CD34+ umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA. Hum Gene Ther. 1998;9:63–71.

    Article  CAS  Google Scholar 

  36. Takebe N, Xu LC, MacKenzie KL, et al. Methotrexate selection of long-term culture initiating cells following transduction of CD34(+) cells with a retrovirus containing a mutated human dihydrofolate reductase gene. Cancer Gene Ther. 2002;9:308–320.

    Article  CAS  Google Scholar 

  37. Havenga M, Valerio D, Hoogerbrugge P, et al. In vivo methotrexate selection of murine hemopoietic cells transduced with a retroviral vector for Gaucher disease. Gene Therapy. 1999;6:1661–1669.

    Article  CAS  Google Scholar 

  38. Warlick CA, Diers MD, Wagner JE, et al. In vivo selection of antifolate-resistant transgenic hematopoietic stem cells in a murine bone marrow transplant model. J Pharmacol Exp Ther. 2002;300:50–56.

    Article  CAS  Google Scholar 

  39. Allay JA, Persons DA, Galipeau J, et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nat Med. 1998;4:1136–1143.

    Article  CAS  Google Scholar 

  40. Koo HM, Brown AM, Kaufman RJ, et al. A spleen necrosis virus-based retroviral vector which expresses two genes from a dicistronic mRNA. Virology. 1992;186:669–675.

    Article  CAS  Google Scholar 

  41. Chen BF, Hwang LH, Chen DS . Characterization of a bicistronic retroviral vector composed of the swine vesicular disease virus internal ribosome entry site. J Virol. 1993;67:2142–2148.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Aran JM, Gottesman MM, Pastan I . Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector. Proc Natl Acad Sci USA. 1994;91:3176–3180.

    Article  CAS  Google Scholar 

  43. Sugimoto Y, Aksentijevich I, Gottesman MM, et al. Efficient expression of drug-selectable genes in retroviral vectors under control of an internal ribosome entry site. Biotechnology (NY). 1994;12:694–698.

    CAS  Google Scholar 

  44. Galipeau J, Benaim E, Spencer HT, et al. A bicistronic retroviral vector for protecting hematopoietic cells against antifolates and P-glycoprotein effluxed drugs. Hum Gene Ther. 1997;8:1773–1783.

    Article  CAS  Google Scholar 

  45. Letourneau S, Palerme JS, Delisle JS, et al. Coexpression of rat glutathione S-transferase A3 and human cytidine deaminase by a bicistronic retroviral vector confers in vitro resistance to nitrogen mustards and cytosine arabinoside in murine fibroblasts. Cancer Gene Ther. 2000;7:757–765.

    Article  CAS  Google Scholar 

  46. Eliopoulos N, Bovenzi V, Le NL, et al. Retroviral transfer and long-term expression of human cytidine deaminase cDNA in hematopoietic cells following transplantation in mice. Gene Therapy. 1998;5:1545–1551.

    Article  CAS  Google Scholar 

  47. Southern PJ, Berg P . Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1:327–341.

    CAS  PubMed  Google Scholar 

  48. Bodine DM, McDonagh KT, Brandt SJ, et al. Development of a high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells. Proc Natl Acad Sci USA. 1990;87:3738–3742.

    Article  CAS  Google Scholar 

  49. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990;10:4239–4242.

    Article  CAS  Google Scholar 

  50. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol. 1994;68:510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bukrinsky MI, Haggerty S, Dempsey MP, et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993;365:666–669.

    Article  CAS  Google Scholar 

  52. Fletcher TM, Brichacek B, Sharova N, et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J. 1996;15:6155–6165.

    Article  CAS  Google Scholar 

  53. Miyoshi H, Smith KA, Mosier DE, et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science. 1999;283:682–686.

    Article  CAS  Google Scholar 

  54. Bunting KD, Galipeau J, Topham D, et al. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood. 1998;92:2269–2279.

    CAS  PubMed  Google Scholar 

  55. Bunting KD, Galipeau J, Topham D, et al. Effects of retroviral-mediated MDR1 expression on hematopoietic stem cell self-renewal and differentiation in culture. Ann NY Acad Sci. 1999;872:125–140.

    Article  CAS  Google Scholar 

  56. Sellers SE, Tisdale JF, Agricola BA, et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood. 2001;97:1888–1891.

    Article  CAS  Google Scholar 

  57. Lewis WS, Cody V, Galitsky N, et al. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J Biol Chem. 1995;270:5057–5064.

    Article  CAS  Google Scholar 

  58. Chunduru SK, Cody V, Luft JR, et al. Methotrexate-resistant variants of human dihydrofolate reductase. Effects of Phe31 substitutions. J Biol Chem. 1994;269:9547–9555.

    CAS  PubMed  Google Scholar 

  59. Jansen G, Mauritz RM, Assaraf YG, et al. Regulation of carrier-mediated transport of folates and antifolates in methotrexate-sensitive and -resistant leukemia cells. Adv Enzyme Regul. 1997;37:59–76.

    Article  CAS  Google Scholar 

  60. Moscow JA, Connolly T, Myers TG, et al. Reduced folate carrier gene (RFC1) expression and anti-folate resistance in transfected and non-selected cell lines. Int J Cancer. 1997;72:184–190.

    Article  CAS  Google Scholar 

  61. Blau CA, Neff T, Papayannopoulou T . The hematological effects of folate analogs: implications for using the dihydrofolate reductase gene for in vivo selection. Hum Gene Ther. 1996;7:2069–2078.

    Article  CAS  Google Scholar 

  62. Allay JA, Spencer HT, Wilkinson SL, et al. Sensitization of hematopoietic stem and progenitor cells to trimetrexate using nucleoside transport inhibitors. Blood. 1997;90:3546–3554.

    CAS  PubMed  Google Scholar 

  63. Baer HP, Serignese V, Moorji A, et al. In vivo effectiveness of several nucleoside transport inhibitors in mice and hamsters. Naunyn Schmiedebergs Arch Pharmacol. 1991;343:365–369.

    Article  CAS  Google Scholar 

  64. Griffiths M, Beaumont N, Yao SY, et al. Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med. 1997;3:89–93.

    Article  CAS  Google Scholar 

  65. Belt JA, Marina NM, Phelps DA, et al. Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul. 1993;33:235–252.

    Article  CAS  Google Scholar 

  66. Tura S, Fiacchini M, Zinzani PL, et al. Splenectomy and the increasing risk of secondary acute leukemia in Hodgkin's disease. J Clin Oncol. 1993;11:925–930.

    Article  CAS  Google Scholar 

  67. Delwail V, Jais JP, Colonna P, et al. Fifteen-year secondary leukaemia risk observed in 761 patients with Hodgkin's disease prospectively treated by MOPP or ABVD chemotherapy plus high-dose irradiation. Br J Haematol. 2002;118:189–194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jacques Galipeau and Dr Brian P Sorrentino for the gift of the tyrosine 22 variant of DHFR and derived plasmids. We thank Dr Terry Chow, Dr Harry L Goldsmith, and Alexandre I Belenkov for technical advices and helpful suggestions. This work was supported by a grant from The Cancer Research Society Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Cournoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belzile, JP., Karatzas, A., Shiu, HY. et al. Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase. Cancer Gene Ther 10, 637–646 (2003). https://doi.org/10.1038/sj.cgt.7700619

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700619

Keywords

This article is cited by

Search

Quick links