Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An adenoviral vector containing an arg–gly–asp (RGD) motif in the fiber knob enhances protein product levels from transgenes refractory to expression

Abstract

Genetic manipulation of the adenovirus type 5 represents one strategy to modify viral transduction properties in vitro and in vivo. In the majority of studies to date, reporter gene activity has been monitored to assess transduction efficiency. BRCA1 is a gene whose protein product is clinically important, biologically toxic, difficult to overexpress, and difficult to detect as an untagged protein species. Thus, it represents an attractive candidate from which to evaluate the efficacy of a gene delivery system. In the present study, transgene expression was assessed employing otherwise isogenic viruses, which differed only in the presence or absence of an RGD integrin-binding motif in the HI loop of the Ad fiber knob. We utilized a combination of BRCA1 expression level comparisons among several human BRCA1/mutant BRCA1/murine Brca1 constructs and reporter gene activity following transduction of a panel of human breast and ovarian tumor cell lines representative of both sporadic and hereditary cases. A general overall concordance in efficiency was observed, whether the biological readout measured was reporter gene activity or steady-state level of ectopic BRCA1 protein produced. Importantly, the expression of full-length wild-type BRCA1 protein, clinically relevant mutant BRCA1 proteins or murine Brca1 was superior when the gene was delivered via the RGD-modified Ad. The ectopic BRCA1 stabilized endogenous BARD1 and this functional effect was evident at lower input viral doses when BRCA1 was delivered via the RGD-modified Ad. Quantitative, noninvasive, real-time image analysis of reporter gene function in nude mice harboring human ovarian tumor xenographs demonstrated a similar enhancement of expression in vivo by the RGD fiber modification, with low levels of transduction of normal mouse mesothelium. These results provide additional evidence supporting the concept that rational modification of viral vectors can result in the delivery of functionally active therapeutic proteins such as BRCA1 that present with technical difficulties with regard to their expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 5
Figure 3
Figure 1
Figure 2
Figure 4

Similar content being viewed by others

References

  1. Bergelson J, Cunningham J, Droguett G, et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275:1320–1323.

    Article  CAS  PubMed  Google Scholar 

  2. Tomko R, Xu R, Philipson L . HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA. 1997;94:3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bergelson J, Krithivas A, Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virology. 1998;72:415–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wickham T, Mathias P, Cheresh D, et al. Integrins alpha V Beta3 and alpha V Beta5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319.

    Article  CAS  PubMed  Google Scholar 

  5. Nemerow G . Cell receptors involved in adenovirus entry. Virology. 2000;274:1–4.

    Article  CAS  PubMed  Google Scholar 

  6. Fechner H, Haack A, Wang H, et al. Expression of coxsackie adenovirus receptor and alpha v-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy. 1999;6:1520–1535.

    Article  CAS  PubMed  Google Scholar 

  7. Krasnykh V, Dmitriev I, Navarro J, et al. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res. 2000;60:6784–6787.

    CAS  PubMed  Google Scholar 

  8. Curiel D . Rational design of viral vectors based on rigorous analysis of capsid structures. Mol Ther. 2000;1:3–4.

    Article  CAS  PubMed  Google Scholar 

  9. Dmitriev I, Krasnykh V, Miller C, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72:9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller C, Buchsbaum DJ, Reynolds P, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 1998;58:5738–5748.

    CAS  PubMed  Google Scholar 

  11. Krasnykh V, Dmitriev I, Mikheeva G, et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998;72:1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Pong R, Bergelson J, et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 1999;59:325–330.

    CAS  PubMed  Google Scholar 

  13. Cripe T, Dunphy E, Holub A, et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus–adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001;61:2953–2960.

    CAS  PubMed  Google Scholar 

  14. Zeimet A, Muller-Holzner E, Schuler A, et al. Determination of molecules regulating gene delivery using adenoviral vectors in ovarian carcinomas. Gene Therapy. 2002;9:1093–1100.

    Article  CAS  PubMed  Google Scholar 

  15. Wickham T, Roelvink P, Brough DE . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol. 1996;14:1570–1573.

    Article  CAS  PubMed  Google Scholar 

  16. Wickham T, Tzeng E, Shears II LL, et al. Increased in vitro gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol. 1997;71:8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Krasnykh V, Belousova N, Korokhov N, et al. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol. 2001;75:4176–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seki T, Dmitriev I, Kashentseva E, et al. Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol. 2002;76:1100–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Staba M, Wickham T, Kovesdi I, et al. Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Cancer Gene Ther. 2000;7:13–19.

    Article  CAS  PubMed  Google Scholar 

  20. Vigne E, Mahfouz I, Dedieu J, et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol. 1999;73:5156–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wickham T, Carrion ME, Kovesdi I . Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Therapy. 1995;2:750–756.

    CAS  PubMed  Google Scholar 

  22. Dmitriev I, Kashentseva E, Curiel D . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol. 2002;76:6893–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Einfeld D, Schroeder R, Roelvink P, et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol. 2001;75:11284–11291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seki T, Dmitriev I, Suzuki K, et al. Fiber shaft extension in combination with HI loop ligands augments infectivity for CAR-negative tumor targets but does not enhance hepatotropism in vivo. Gene Therapy. 2002;9:1101–1108.

    Article  CAS  PubMed  Google Scholar 

  25. Hemminki A, Zinn K, Liu B, et al. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst. 2002;94:741–749.

    Article  CAS  PubMed  Google Scholar 

  26. Casado E, Navarro J, Yamamoto M, et al. Strategies to accomplish targeted expression of transgenes in ovarian cancer for molecular therapeutic applications. Clin Cancer Res. 2001;7:2496–2504.

    CAS  PubMed  Google Scholar 

  27. Nakamura T, Sato K, and Hamada H . Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors. Hum Gene Ther. 2002;13:613–626.

    Article  CAS  PubMed  Google Scholar 

  28. Okada Y, Okada N, Nakagawa S, et al. Fiber-mutant technique can augment gene transduction efficacy and anti-tumor effects against established murine melanoma by cytokine-gene therapy using adenoviral vectors. Cancer Lett. 2002;177:57–63.

    Article  CAS  PubMed  Google Scholar 

  29. Venkitaraman A . Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108:171–182.

    Article  CAS  PubMed  Google Scholar 

  30. Welcsh P, Lee M, Gonzalez-Hernandez R, et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci USA. 2002;99:7560–7565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harkin D, Bean J, Miklos D, et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 1999;97:575–586.

    Article  CAS  PubMed  Google Scholar 

  32. Scully R, Ganesan S, Brown M, et al. Location of BRCA1 in human breast and ovarian cancer cells. Science. 1996;272:123–125.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson C, Payton M, Pekar S, et al. BRCA1 protein products: Antibody specificity. Nat Genet. 1996;13:264–265.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, Farmer A, Chen C, et al. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 1996;56:3168–3172.

    CAS  PubMed  Google Scholar 

  35. Holt J, Thompson M, Szabo C, et al. Growth retardation and tumour inhibition by BRCA1. Nat Genet. 1996;12:298–302.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson C, Payton M, Elliott G, et al. Differential subcellular localization, expression and biological toxicity of BRCA1 and the splice variant BRCA1-delta 11b. Oncogene. 1997;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  37. Aprelikova O, Fang B, Meissner E, et al. BRCA1-associated growth arresggt is RB-dependent. Proc Natl Acad Sci USA. 1999;96:11866–11871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Campbell M, Apreikova O, Van der Meer R, et al. Construction and characterization of recombinant adenoviruses expressing human BRCA1 or murine Brca1 genes. Cancer Gene Ther. 2001;8:231–239.

    Article  CAS  PubMed  Google Scholar 

  39. Shao N, Chai Y, Shyam E, et al. Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene. 1996;13:1–7.

    CAS  PubMed  Google Scholar 

  40. Thangaraju M, Kaufmann S, Couch F . BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem. 2000;275:33487–33496.

    Article  CAS  PubMed  Google Scholar 

  41. Sobczak K, Krzyzosiak W . Structural determinants of BRCA1 translational regulation. J Biol Chem. 2002;277:17349–17358.

    Article  CAS  PubMed  Google Scholar 

  42. Xu C, Brown M, Chambers J, et al. Distinct transcription start sites generate two forms of BRCA1 mRNA. Hum Mol Genet. 1995;4:2259–2264.

    Article  CAS  PubMed  Google Scholar 

  43. Arizti P, Fang L, Park I, et al. Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol. 2000;20:7450–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blagosklonny M, An W, Melilo G, et al. Regulation of BRCA1 by protein degradation. Oncogene. 1999;18:6460–6468.

    Article  CAS  PubMed  Google Scholar 

  45. Chen A, Kleiman F, Manley J, et al. Autoubiquitination of the BRCA1-BARD1 RING ubiquitin ligase. J Biol Chem. 2002;277:22085–22092.

    Article  CAS  PubMed  Google Scholar 

  46. Aprelikova O, Pace A, Fang B, et al. BRCA1 is a selective co-activator of 14-3-3 sigma gene transcription in mouse embryonic stem cells. J Biol Chem. 2001;276:25647–25650.

    Article  CAS  PubMed  Google Scholar 

  47. Tait D, Obermiller P, Redlin-Frazier S, et al. A phase I trial of retroviral BRCA1 sv gene therapy in ovarian cancer. Clin Cancer Res. 1997;3:1959–1968.

    CAS  PubMed  Google Scholar 

  48. Tait D, Obermiller P, Hatmaker A, et al. Ovarian cancer BRCA1 gene therapy: phase I and II trial differences in immune response and vector stability. Clin Cancer Res. 1999;5:1708–1714.

    CAS  PubMed  Google Scholar 

  49. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279:377–380.

    Article  CAS  PubMed  Google Scholar 

  50. He T-C, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomlinson G, Chen T, Stastny V, et al. Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res. 1998;58:3237–3242.

    CAS  PubMed  Google Scholar 

  52. Yuan Y, Kim W, Han H, et al. Establishment and characterization of human ovarian carcinoma cell lines. Gynecol Oncol. 1997;66:378–387.

    Article  CAS  PubMed  Google Scholar 

  53. Hsu K, Lonberg-Holm K, Alstein B, et al. A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J Virol. 1988;62:1647–1652.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sweeney T, Mailander V, Tucker A, et al. Visualizing the kinetics of tumor cell clearance in living animals. Proc Natl Acad Sci USA. 1999;96:12044–12049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Welcsh P, King M-C . BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001;10:705–713.

    Article  CAS  PubMed  Google Scholar 

  56. Wu L, Wang Z, Tsan J, et al. Indentification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996;14:430–440.

    Article  CAS  PubMed  Google Scholar 

  57. Brzovic P, Rajagopal P, Hoyt D, et al. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol. 2001;8:833–837.

    Article  CAS  PubMed  Google Scholar 

  58. Hashizume R, Fukuda M, Maeda I, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001;276, 14537–14540.

    Article  CAS  PubMed  Google Scholar 

  59. Fabbro M, Rodriguez J, Baer R, et al. BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export. J Biol Chem. 2002;277:21315–21324.

    Article  CAS  PubMed  Google Scholar 

  60. Lorick K, Jensen J, Fang S, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA. 1999;96, 11364–11369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ruffner H, Joazeiro C, Hemmati D, et al. Cancer-predisposing mutations within the RING domain of BRCA1:loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA. 2001;98:5134–5139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Contag P, Olomu I, Stevenson D, et al. Bioluminescent indicators in living mammals. Nat Med. 1998;4:245–247.

    Article  CAS  PubMed  Google Scholar 

  63. Kasono K, Blackwell J, Douglas J, et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res. 1999;5:2571–2579.

    CAS  PubMed  Google Scholar 

  64. Blackwell J, Li H, Navarro J, et al. Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid. Hum Gene Ther. 2000;11:1657–1669.

    Article  CAS  PubMed  Google Scholar 

  65. Kanerva A, Wang M, Bauerschmitz G, et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther. 2002;5:695–704.

    Article  CAS  PubMed  Google Scholar 

  66. Hemminki A, Belousova N, Zinn K, et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther. 2001;4:223–231.

    Article  CAS  PubMed  Google Scholar 

  67. Koizumi N, Mizuguchi H, Hosono T, et al. Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide. Biochem Biophys Acta. 2001;1569:13–20.

    Article  Google Scholar 

  68. Reynolds P, Dmitriev I, Curiel D . Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Therapy. 1999;6:1336–1339.

    Article  CAS  PubMed  Google Scholar 

  69. Omori N, Mizuguchi H, Ohsawa K, et al. Modification of a fiber protein in an adenovirus vector improves in vitro gene transfer efficiency to the mouse microglial cell line. Neurosci Lett. 2002;324:145–148.

    Article  CAS  PubMed  Google Scholar 

  70. Bauerschmitz G, Lam J, Kanerva A, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 2002;62:1266–1270.

    CAS  PubMed  Google Scholar 

  71. Bilbao G, Contreras J, Dmitriev I, et al. Genetically modified adenovirus vector containing an RGD peptide in the HI loop of the fiber knob improves gene transfer to nonhuman primate isolated pancreatic islets. Am J Transplant. 2002;2:237–243.

    Article  CAS  PubMed  Google Scholar 

  72. VanderWaak T, Wang M, Gomez-Navarro J, et al. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol. 1999;74:227–234.

    Article  Google Scholar 

  73. Okegawa T, Pong R, Li Y, et al. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of CAR protein structure. Cancer Res. 2001;61:6592–6600.

    CAS  PubMed  Google Scholar 

  74. Reynolds P, Nicklin S, Kaliberova L, et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol. 2001;19:838–842.

    Article  CAS  PubMed  Google Scholar 

  75. Selvakumaran M, Bao R, Crijns A, et al. Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res. 2001;61:1291–1295.

    CAS  PubMed  Google Scholar 

  76. Casado E, Nettelbeck D, Navarro J, et al. Transcriptional targeting for ovarian cancer gene therapy. Gynecol Oncol. 2001;82:229–237.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Richard Baer (Columbia University), Jeffrey Bergelson (University of Pennsylvania), and Tong-Chuan He (University of Chicago) for reagents used in this study. We also thank Duco Jansen (Vanderbilt University) for use of the macroimaging facilities, Jim Price, and Melanie Smith (Nashville VA Hospital) for assistance with the flow cytometry, and Jean McClure (Vanderbilt University Medical Center) for help with the figures. This work was supported by research grants from the United States Army Research and Materiel Command (DAMD17-99-1-9424) to MC, NIH (RO1 CA80067) to RAJ, and an American Cancer Society discovery grant to SQ. Support for SW was provided by NIH CA86283 (P20) and CA68485 (P30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, M., Qu, S., Wells, S. et al. An adenoviral vector containing an arg–gly–asp (RGD) motif in the fiber knob enhances protein product levels from transgenes refractory to expression. Cancer Gene Ther 10, 559–570 (2003). https://doi.org/10.1038/sj.cgt.7700599

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700599

Keywords

This article is cited by

Search

Quick links