Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene therapy for hepatocellular carcinoma using non-viral vectors composed of bis guanidinium-tren-cholesterol and plasmids encoding the tissue inhibitors of metalloproteinases TIMP-2 and TIMP-3

Abstract

Metalloproteinases (MMPs) and their natural inhibitors (TIMPs) contribute to the regulation of tumor microenvironment. Their expressions are deregulated in almost all human cancers. We report a novel approach to gene therapy of hepatocellular carcinoma (HCC), using repeated injections of DNA plasmids encoding the tissue inhibitors of metalloproteinases (TIMPs) TIMP-2 or TIMP-3, and a novel competent formulation of gene transfer based on nontoxic cationic cholesterol derivatives. The new gene delivery system was efficient in demonstrating the antitumor efficiency of TIMP-2 or TIMP-3 in inhibiting tumor growth of human HuH7 HCC cells xenografted into nude mice. We show, for the first time, an in vivo effect of TIMP-3 in delaying HCC tumor growth. No treatment-related toxicity was noted. An inhibition of angiogenesis and tumor necrosis accompanied the inhibitory effects of TIMP-2 or TIMP-3 on tumor expansion and invasion. We also report a bystander effect produced by transfected HuH7 tumor cells mixed with untransfected cells in 1:1 ratio in culture that resulted in killing 98% of cells within 96 h. In addition, the soluble forms of TIMP-2 and TIMP-3 expressed by transfected cells exerted a cytotoxic effect on untransfected HuH7 cell cultures. Taken together, these results demonstrate the potential efficacy of repeated treatment of secreted TIMP-2 and TIMP-3 for the design of nonviral gene therapy for hepatocarcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Deuffic S, Poynard T, Buffat L, et al. Trends in primary liver cancer. Lancet. 1998;351:214–216.

    Article  CAS  PubMed  Google Scholar 

  2. El-Serag HB, Mason AC . Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340:745–750.

    Article  CAS  PubMed  Google Scholar 

  3. Takayama T, Makuuchi M, Hirohashi S, et al. Early hepatocellular carcinoma as entity with a high rate of surgical cure. Hepatology 1998;28:1241–1246.

    Article  CAS  PubMed  Google Scholar 

  4. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–699.

    Article  CAS  PubMed  Google Scholar 

  5. Livraghi T, Giorgio A, Marin G, et al. Hepatocellular carcinomas and cirrhosis in 746 patients:long term results of percutaneous ethanol injection. Radiology. 1995;197:101–108.

    Article  CAS  PubMed  Google Scholar 

  6. Pelletier G, Ducreux M, Gay F, et al. Treatment of unsectable hepatocellular carcinoma with lipiodol chemoembolization:a multicenter randomized trial. J Hepatol. 1998;29:129–134.

    Article  CAS  PubMed  Google Scholar 

  7. Nilsson L, Rudenstam CM, Zettergren L . Vascularization of liver tumors and the effect of hepatic artery ligature. Bibl Anat. 1967;9:45–49

    Google Scholar 

  8. Breedis C, Young G . Blood supply of neoplasms in the liver. Am J Pathol. 1954;30:969–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerolami R, Cardoso J, Bralet M-P, et al. Enhanced in vivo adenovirus-mediated gene transfer to rat hepatocarcinomas by selective administration into the hepatic artery. Gene Ther. 1998;5:896–904.

    Article  CAS  PubMed  Google Scholar 

  10. Gerolami R, Cardoso J, Lewin, et al. Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res. 2000;60:993–1001.

    CAS  PubMed  Google Scholar 

  11. Sa Cunha A, Bonte E, Dubois S, et al. Inhibition of rat hepatocellular carcinoma tumor growth after multiple infusions of recombinant Ad.AFPtk followed by ganciclovir treatment. J Hepatol. 2002;37:222–230.

    Article  CAS  PubMed  Google Scholar 

  12. Tran PL, Sa Cunha A, Virone A, et al. In vivo antitumor efficacy of Ad5CMV-p53 in a rat model of chemically-induced hepatocellular carcinoma after a single intra-tumor injection or multiple infusions by intra-hepatic artery route. Proc Am Ass Cancer Res. 1999;40:3910.

    Google Scholar 

  13. Egeblad M, Werb Z . New functions for the matrix metalloproteases in cancer progression. Nat Rev Cancer. 2002;2:163–176.

    Article  Google Scholar 

  14. Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases:structure, regulation and biological functions. Eur J Cell Biol. 1997;74:111–122.

    CAS  PubMed  Google Scholar 

  15. Werb Z . ECM cell surface proteolysis and regulating cellular ecology. Cell. 1997;91:439–442.

    Article  CAS  PubMed  Google Scholar 

  16. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin ανβ3. Cell. 1996;85:683–693.

    Article  CAS  PubMed  Google Scholar 

  17. Brooks PC, Silletti S, von Schalscha TL, et al. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell. 1998;92:391–400.

    Article  CAS  PubMed  Google Scholar 

  18. Amour A, Slocombe PM, Webster A, et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 1998;435:39–44.

    Article  CAS  PubMed  Google Scholar 

  19. Amour A, Knight CG, Webster A, et al. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 2000;473:275–279.

    Article  CAS  PubMed  Google Scholar 

  20. Kashiwagi M, Tortorella M, Nagase H, et al. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem. 2001;276:12501–12504.

    Article  CAS  PubMed  Google Scholar 

  21. Ahonen M, Baker AH, Kähäri V-M . Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998;58:2310–2315.

    CAS  PubMed  Google Scholar 

  22. Baker AH, George SJ, Zaltsman AB, et al. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer. 1999;79:1347–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bond M, Murphy G, Bennett MR, et al. Localization of the death domain of tissue inhibitor of metalloproteinases-3 to the N terminus. J Biol Chem. 2000;52:4358–4363.

    Google Scholar 

  24. Lehn JM, Lehn P, Vigneron JP . Compounds related to the amidinium family, pharmaceutical compositions containing same, and uses thereof. Patent 6143729, 2000.

  25. Tran PL, Weinbach J, Opolon P, et al. Prevention of bleomycin-induced pulmonary fibrosis after adenovirus-mediated transfer of the bacterial bleomycin resistance gene. J Clin Invest. 1997;99:608–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vigneron J-P, Oudrhiri N, Fauquet M, et al. Guanidinium-cholesterol cationic lipids:efficient vectors for the transfection of eukaryotic cells. Proc Natl Acad Sci USA. 1996;93:9682–9686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brand K, Baker AH, Perez-Canto A, et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 in the liver tissue. Cancer Res. 2000;60:5273–5730.

    Google Scholar 

  28. Giannelli G, Bergamini C, Fransvea E, et al. Human hepatocellular carcinoma (HCC) cells require both α3β1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest. 2001;81:8613–8627.

    Article  Google Scholar 

  29. Laemmli UK . Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.

    Article  CAS  PubMed  Google Scholar 

  30. Pitard B, Oudhrhiri, Lambert O, et al. Sterically stabilized BGTC-based lipoplexes:structural features and gene transfection into the mouse airways in vivo. J Gene Med. 2001;3:478–487.

    Article  CAS  PubMed  Google Scholar 

  31. DeClerk YA, Perez N, Shimada H, et al. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992;52:701–708.

    Google Scholar 

  32. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med. 1996;2:985–981.

    Article  CAS  PubMed  Google Scholar 

  33. Bao J-J, Zhang W-W, Kuo MT . Adenoviral delivery of recombinant DNA into transgenic mice bearing hepatocellular carcinomas. Hum Gene Ther. 1996;7:355–365.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson SC, Johnson DE, Harris MP, et al. p53 Gene therapy in a rat model of hepatocellular carcinoma:Intra-arterial delivery of recombinant adenovirus. Clin Cancer Res. 1998;4:1649–1659.

    CAS  PubMed  Google Scholar 

  35. Leeson-Wood LA, Kim WH, Kleinman HK, et al. Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther. 1995;6:395–405.

    Article  Google Scholar 

  36. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res. 1995;55:5283–5287.

    CAS  PubMed  Google Scholar 

  37. Qian C, Idoate M, Bilbao R, et al. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther. 1997;8:349–358.

    Article  CAS  PubMed  Google Scholar 

  38. Habib NA, Sarraf CE, Mitry RR, et al. E1B-deleted adenovirus (dl520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther. 2001;12:219–226.

    Article  CAS  PubMed  Google Scholar 

  39. Fidler IJ . Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst. 1995;87:1588–1592.

    Article  CAS  PubMed  Google Scholar 

  40. Boudreau N, Bissell MJ . Extracellakular matrix signaling: integration of form and function in normal and malignat cells. Curr Opin Cell Biol. 1998;10:640–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:163–176.

    Article  Google Scholar 

  42. Li H, Lindenmeyer F, Grenet C, et al. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther. 2001;12:515–526.

    Article  CAS  PubMed  Google Scholar 

  43. Ahonen M, Ala-Aho R, Baker AH, et al. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Mol Ther. 2002;5:705–715.

    Article  CAS  PubMed  Google Scholar 

  44. Giannelli G, Bergamini C, Marinosci F, et al. Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. Int J Cancer. 2002;97:425–431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs J-C Ehrhart, M. Buckle, and J-R Bertrand for critical reading of the manuscript, Professor J-M Lehn and Dr P Lehn for discussions, and A Rouchès and P Ardouin (Laboratoire d'Expérimentation Animale) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong-Lan Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, PL., Vigneron, JP., Pericat, D. et al. Gene therapy for hepatocellular carcinoma using non-viral vectors composed of bis guanidinium-tren-cholesterol and plasmids encoding the tissue inhibitors of metalloproteinases TIMP-2 and TIMP-3. Cancer Gene Ther 10, 435–444 (2003). https://doi.org/10.1038/sj.cgt.7700592

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700592

Keywords

This article is cited by

Search

Quick links