Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endogenous p21WAF1/CIP1 status predicts the response of human tumor cells to wild-type p53 and p21WAF1/CIP1 overexpression

Abstract

Expression of exogenous wild-type (wt) p53 protein can suppress the growth and/or induce apoptosis in different tumor cells. The effect of exogenous p21WAF1/CIP1 expression is more controversial: while it can induce apoptosis in some cells, it can protect against p53-mediated apoptosis in others. We used adenoviral vectors to introduce p53 and p21WAF1/CIP1 genes into human tumor cell lines with different p53 and/or p21WAF1/CIP1 status. The cell growth inhibition and the induction of apoptosis were measured. Overexpression of wt p53 induced more efficient growth inhibition and apoptosis in SW 620 (mutant p53) and HeLa (inactivated p53 protein) than in MCF-7 (wt p53) and CaCo-2 cell line, which was the most resistant to p53 overexpression despite the p53 mutation. Unlike HeLa and SW 620 cells, the basal p21 protein level was readily detected in CaCo-2 and MCF-7 cells. Overexpression of p21WAF1/CIP1 gene induced somewhat less pronounced growth inhibition of all cell lines tested, but it also induced apoptosis in HeLa and SW 620 cells. These results suggest that the basal, but not the inducible, levels of p21WAF1/CIP1 protein in tumor cells could protect from p53-mediated apoptosis. On the other hand, overexpression of p21WAF1/CIP1 gene itself can induce apoptosis in cells with no basal p21WAF1/CIP1 protein level. Possible mechanisms of the differential response to these genes are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wallace-Brodeur RR, Lowe SW . Clinical implications of p53 mutations. Cell Mol Life Sci. 1999;55:64–75.

    Article  CAS  Google Scholar 

  2. van Oijen MGCT, Slootweg PJ . Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res. 2000;6:2138–2145.

    CAS  PubMed  Google Scholar 

  3. Weinberg RA . Tumor suppressor genes. Science. 1991;254:1138–1146.

    Article  CAS  Google Scholar 

  4. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89:21–39.

    Article  CAS  Google Scholar 

  5. Hollstein M, Shomer B, Greenblatt M, et al. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acid Res. 1996;24:141–146.

    Article  CAS  Google Scholar 

  6. Stewart ZA, Pietenpol JA . p53 signaling and cell cycle checkpoints. Chem Res Toxicol. 2001;14:243–263.

    Article  CAS  Google Scholar 

  7. Vousden KH . p53: death star. Cell. 2000;103:691–694.

    Article  CAS  Google Scholar 

  8. Nielsen LL, Maneval DC . p53 tumor suppressor gene therapy for cancer. Cancer Gene Ther. 1998;5:52–63.

    CAS  PubMed  Google Scholar 

  9. Gallagher WM, Brown R . p53-oriented cancer therapies: current progress. Ann Oncol. 1999;10:139–150.

    Article  CAS  Google Scholar 

  10. St John LS, Sauter ER, Herlyn M, et al. Endogenous p53 gene status predicts the response of human squamous cell carcinomas to wild-type p53. Cancer Gene Ther. 2000;7:749–756.

    Article  CAS  Google Scholar 

  11. Gotoh A, Kao CH, Ko SC, et al. Cytotoxic effects of recombinant adenovirus p53 and cell cycle regulator genes (p21WAF1/Cip1 and p16CDKN4) in human prostate cancers. J Urol. 1997;158:636–641.

    Article  CAS  Google Scholar 

  12. Ko SC, Gotoh A, Thalamann GN, et al. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model. Hum Gene Ther. 1996;7:1683–1691.

    Article  CAS  Google Scholar 

  13. Mujoo K, Catino JJ, Maneval DC, et al. Studies on the molecular mechanism of growth inhibition with p53 adenoviral construct in human ovarian cancer, Int J Gynecol Cancer. 1998;8:233–241.

    Article  Google Scholar 

  14. Sheikh MS, Rochefort H, Garcia M . Overexpression of p21 WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines. Oncogene. 1995;11:1899–1905.

    CAS  PubMed  Google Scholar 

  15. Ramondetta L, Mills GB, Burke TW, et al. Adenovirus-mediated expression of p53 or p21 in papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: potential application of gene therapy to endometrial cancer, Clin Cancer Res. 2000;6:278–284.

    CAS  PubMed  Google Scholar 

  16. Katayose D, Wersto R, Cowan KH, et al. Effects of a recombinant adenovirus expressing WAF1/Cip1 on cell growth, cell cycle and apoptosis. Cell Growth Differ. 1995;6:1207–1212.

    CAS  PubMed  Google Scholar 

  17. Joshi US, Dergham ST, Chen YQ, et al. Inhibition of pancreatic tumor cell growth in culture by p21WAF1 recombinant adenovirus. Pancreas. 1998;16:107–113.

    Article  CAS  Google Scholar 

  18. Cardinali M, Jakus J, Shah S, et al. p21(WAF1 CIP1) retards the growth of human squamous cell carcinomas in vivo. Oral Oncol. 1998;34:211–218.

    Article  CAS  Google Scholar 

  19. Parker LP, Wolf JK, Price JE . Adenoviral-mediated gene therapy with Ad5CMVp53 and Ad5CMVp21 in combination with standard therapies in human breast cancer cell lines. Ann Clin Lab Sci. 2000;30:395–405.

    CAS  PubMed  Google Scholar 

  20. Gorospe M, Cirielli C, Wang X, et al. p21Waf1/Cip1 protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 1997;14:929–935.

    Article  CAS  Google Scholar 

  21. Dotto GP . P21WAF1/CIP1: more than a break to the cell cycle. Biochem Biophys Acta. 2000;1471:M43–M56.

    CAS  PubMed  Google Scholar 

  22. Negoescu A . Apoptosis in cancer: therapeutic implications. Histol Histopathol. 2000;15:281–297.

    CAS  PubMed  Google Scholar 

  23. Djelloul S, Forgue-Lafitte M-E, Hermelin B, et al. Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in human colonic Caco-2 cells. FEBS Lett. 1997;406:234–242.

    Article  CAS  Google Scholar 

  24. Gartel AL, Serfas MS, Tyner AL . p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med. 1996;213:138–149.

    Article  CAS  Google Scholar 

  25. Zhang WW, Fang XM, Mazur W, et al. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther. 1994;1:5–13.

    PubMed  Google Scholar 

  26. Herrmann M, Lorenz HM, Voll R, et al. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acid Res. 1994;22:5506–5507.

    Article  CAS  Google Scholar 

  27. D'Orazi G, Marchetti A, Crescenzi M, et al. Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J Gene Med. 2000; 2:11–21.

    Article  CAS  Google Scholar 

  28. Polyak K, Waldman T, He TC, et al. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 1996;10:1945–1952.

    Article  CAS  Google Scholar 

  29. Shibata M-A, Yoshidome K, Shibata E, et al. Suppression of mammary carcinoma growth in vitro and in vivo by inducible expression of the Cdk inhibitor p21. Cancer Gene Ther. 2001;8:23–25.

    Article  CAS  Google Scholar 

  30. Tsao Y-P, Huang S-J, Chang J-L, et al. Adenovirus-mediated p21Waf1/Cip1 gene transfer induces apoptosis of human cervical cancer cell lines. J Virol. 1999;73:4983–4990.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Katayose D, Gudas J, Nguyen H, et al. Cytotoxic effects of adenovirus-mediated wild-type p53 protein expression in normal and tumor mammary epithelial cells. Clin Cancer Res. 1995;1:889–897.

    CAS  PubMed  Google Scholar 

  32. Haas-Kogan DA, Kogan SC, Levi D, et al. Inhibition of apoptosis by the retinoblastoma gene product. EMBO J. 1995;14:461–472.

    Article  CAS  Google Scholar 

  33. Yamamoto H, Soh JW, Monden T, et al. Paradoxical increase in retinoblastoma protein in colorectal carcinomas may protect cells from apoptosis. Clin Cancer Res. 1999;5:1805–1815.

    CAS  PubMed  Google Scholar 

  34. Gottlieb E and Moshe O . p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53. EMBO J. 1998;17:3587–3596.

    Article  Google Scholar 

  35. Ip SM, Huang T-G, Yeung WSB, Ngan HYS . pRb-expressing adenovirus Ad5-Rb attenuates the p53-induced apoptosis in cervical cancer cell lines. Eur J Cancer. 2001;37:2475–2483.

    Article  CAS  Google Scholar 

  36. Wildrick DM, Boman BM . Does the human retinoblastoma gene have a role in colon cancer? Mol Carcinog. 1994;10:1–7.

    Article  CAS  Google Scholar 

  37. Okamoto A, Demetrick DJ, Spillare EA, et al. Mutations and altered expression of p16 INK4 in human cancer. Proc Natl Acad Sci USA. 1994;91:11045–11049.

    Article  CAS  Google Scholar 

  38. Clayman GL, Liu TJ, Overholt M, et al. Gene therapy for head and neck cancer. Comparing the tumor suppressor gene p53 and a cell cycle regulator WAF1/CIP1 (p21). Arch Otolaryngol Head Neck Surg. 1996;122:489–493.

    Article  CAS  Google Scholar 

  39. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer. 2002;2:594–604.

    Article  CAS  Google Scholar 

  40. Duttatory A, Qian J-F, Smith JS, Wang E . Up-regulated p21CIP1 expression is part of the regulation quantitatively controlling serum deprivation-induced apoptosis. J Cell Biochem. 1997;64:434–446.

    Article  Google Scholar 

  41. Roninson IB . Oncogenic functions of tumor suppressor p21Waf1/Cip1/Sdi1 association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 2002;179:1–14.

    Article  CAS  Google Scholar 

  42. Chang B-D, Watanabe K, Broude EV, et al. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Nat Acad Sci USA. 2000;97:4291–4296.

    Article  CAS  Google Scholar 

  43. Kitaura H, Shinishi M, Uchikoshi Y, et al. Reciprocal regulation via protein–protein interaction between c-Myc and p21cip1/waf1/sdi1 in DNA replication and transcription. J Biol Chem. 2000;275:10477–10483.

    Article  CAS  Google Scholar 

  44. Frederick MJ, Holton PR, Hudson M, et al. Expression of apoptosis-related genes in human head and neck squamous cell carcinomas undergoing p53-mediated programmed cell death. Clin Cancer Res. 1999;5:361–369.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 0098092 from the Ministry of Science and Technology, Republic of Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijeta Kralj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralj, M., Husnjak, K., Körbler, T. et al. Endogenous p21WAF1/CIP1 status predicts the response of human tumor cells to wild-type p53 and p21WAF1/CIP1 overexpression. Cancer Gene Ther 10, 457–467 (2003). https://doi.org/10.1038/sj.cgt.7700588

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700588

Keywords

This article is cited by

Search

Quick links