Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients

Abstract

ONYX-015 is an adenovirus that selectively replicates in p53 dysfunctional or mutated malignant cells. We performed a pilot trial to determine the safety and feasibility of treatment with ONYX-015 delivered intravenously in patients with advanced malignancy. One cohort of five patients received ONYX-015 once a week for 6 weeks at a dose of 2 × 1012 particles per infusion in combination with weekly infusions of irinotecan (CPT11, 125 mg per week) and 5-fluorouracil (5FU, 500 mg per week). A second cohort of five patients received the combination of ONYX-015 at a dose of 2 × 1011 particles per week for 6 weeks in combination with interleukin 2 (IL 2, 1.1 × 106 units daily via subcutaneous injection for 5 days each week for 4 weeks). Toxicity attributable to ONYX-015 was limited to transient fever. All patients demonstrated elevations in neutralizing antibody titers within 4 weeks of the infusion of ONYX-015. Serum levels of IL-6, IL-10, tumor necrosis factor-α, and interferon-γ increased within 6 hours of viral infusion, suggesting immune activation. This response was more pronounced in the cohort of patients who received 2 × 1012 particles per infusion. Two patients demonstrated uptake of viral particles in malignant tissue by quantitative PCR. Electron microscopy confirmed selective cytoplasmic viral particles within malignant cells but not within adjacent normal tissue in a third patient. In conclusion ONYX-015 can be administered safely in combination with CPT11, 5FU or low-dose IL 2 and is able to access malignant tissue following intravenous infusion. Further investigation of ONYX-015, possibly with agents that may modulate replication activity, or duration of virus survival, is indicated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Heise C, Kirn D . Replication-sensitive adenoviruses for cancer. J Clin Invest. 2000;105:847–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274:373–376.

    Article  CAS  PubMed  Google Scholar 

  3. Heise C, et al. Intravenous administration of ONYX-015, a replication-selective adenovirus, induces anti-tumoral efficacy. Cancer Res. 1999;59:2623–2628.

    CAS  PubMed  Google Scholar 

  4. Heise C, et al. ONYX-015, and E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and anti-tumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 1997;3:639–645.

    Article  CAS  PubMed  Google Scholar 

  5. Fujiwara T, et al. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res. 1994;54:2287–2291.

    CAS  PubMed  Google Scholar 

  6. You L, Yang C-T, Jablons DM . ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 2000;60:1009–1013.

    CAS  PubMed  Google Scholar 

  7. Ganly I, et al. A phase I study of ONYX-015, and E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.

    CAS  PubMed  Google Scholar 

  8. Nemunaitis J, et al. A Phase II trial of intratumoral injection of ONYX-015 in-patients with refractory head and neck cancer. J Clin Oncol. 2001;19:289–298.

    Article  CAS  PubMed  Google Scholar 

  9. Nemunaitis J, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, and E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 2000;60:6359–6366.

    CAS  PubMed  Google Scholar 

  10. Khuri F, et al. A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-FU in patients with recurrent head and neck cancer. Nature Med. 2000;6:879–885.

    Article  CAS  PubMed  Google Scholar 

  11. Nemunaitis J, et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Therapy. 2001;8:746–759.

    Article  CAS  PubMed  Google Scholar 

  12. Barker DD, Berk AJ . Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral injection and DNA transfection. Virology. 1997;156:107–121.

    Article  Google Scholar 

  13. Maron DJ, Hiroomi T, Moscioni AD, et al. Infra arterial delivery of a recombinant adenovirus does not increase gene transfer to tumor cells in a rat model of metastatic colorectal carcinoma. Mol Ther. 2001;4:29–35.

    Article  CAS  PubMed  Google Scholar 

  14. Li E, Stupack D, Bokoch GM, et al. Adenovirus endocytosis requires actin cytoskeleton organization mediated by Rho family GTPases. J Virol. 1998;72:8806–8812.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wolff G, et al. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol. 1997;71:624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Biewenga J, et al. Macrophage depletion in the rat after intraperitoneal administration of liposome-encapsulated clodronate: depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of Fruend's adjuvant. Cell Tissue Res. 1995;280:189–196.

    CAS  PubMed  Google Scholar 

  17. McCuskey RS, McCuskey PA, Urbaschek R, et al. Kupffer cell function in host defense. Rev Infect Dis. 1999;9:S616–S619.

    Google Scholar 

  18. Huitinga L, et al. Macrophages in T-cell line-medicated demyelination and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol. 1995;10:344–351.

    Google Scholar 

  19. Laman JD, Kors N, van Rooijen N, et al. Mechanism of follicular trapping localization of immune complexes and cell remnants after elimination and repopulation of different spleen cell populations. Immunology. 1990;71:57–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinto AJ, Stewart D, van Rooijen N, et al. Selective depletion of liver and splenic macrophages using liposomes encapsulating the drug dichloromethylene diphosphonate: effects on antimicrobial resistance. J Leukoc Biol. 1991;49:579–586.

    Article  CAS  PubMed  Google Scholar 

  21. Qiam Q, Jutila A, van Rooijen, et al. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidates. J Immunol. 1994;152:5000–5008.

    Google Scholar 

  22. Tschaikowsky D, Brain JD . Effects of liposome-encapsulated dichloromethylene diphosphonate on macrophage function and endotoxin-induced mortality. Biochem Biophys Acta. 1994;1222:323–330.

    Article  CAS  PubMed  Google Scholar 

  23. Van Rooijen N . The liposome-mediated macrophage ‘suicide’ technique. J Immunol Meth. 1989;124:1–6.

    Article  CAS  Google Scholar 

  24. Van Rooijen N, Kors N, Kraal G . Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. J Leukoc Biol. 1989;45:97–104.

    Article  CAS  PubMed  Google Scholar 

  25. Van Rooijen N, Kors N, vd Ende M, et al.. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell tissue Res. 1990;260:215–222.

    Article  CAS  PubMed  Google Scholar 

  26. Van Rooijen N, Sanders A . Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Meth. 1994;174:83–93.

    Article  CAS  Google Scholar 

  27. Van Rooijen N, Sanders A . Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology. 1996;23:1239–1243.

    Article  CAS  PubMed  Google Scholar 

  28. Vreden SG, et al. Kupffer cell elimination enhances development of liver schizonts of Plasmodium berghei in rats. Infect Immun. 1993;61:1936–1939.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heideman DA, Snijders PJ, Craanen ME, et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Therapy. 2001;8:342–351.

    Article  CAS  PubMed  Google Scholar 

  30. Seidman M, Hogan S, Wendland R, et al. Variation in adenovirus receptor expression and adenovirus vector-mediated transgene expression at defined stages of the cell cycle. Mol Ther. 2001;4:13–21.

    Article  CAS  PubMed  Google Scholar 

  31. Jordan MA, Toso RJ, Thrower D, et al. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA. 1993;90:9552–9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Long BH, Fairchild CR . Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res. 1994;54:4355–4361.

    CAS  PubMed  Google Scholar 

  33. Kay MA, Holterman AX, Meusel L, et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA41g administration. Nat Genet. 1995;11:191–197.

    Article  CAS  PubMed  Google Scholar 

  34. Crystal RG . Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994;8:42–51.

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Li Q, Ertl HC, Wilson JM, et al. Cellular and tumoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenovirus. J Virol. 1995;69:2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Greenough K, Wilson JM . Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver. Gene Therapy. 1996;3:412–420.

    CAS  PubMed  Google Scholar 

  37. Dai Y . Cellular and tumoral immune response to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA. 1995;92:1401–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kass-Eisler A . The impact of development stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Therapy. 1994;1:395–402.

    CAS  PubMed  Google Scholar 

  39. Yang Y, Trinchieri G, Wilson JM . Recombinant IL-12 prevents formation of blocking IfA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat Med. 1995;1:890–893.

    Article  CAS  PubMed  Google Scholar 

  40. Kolls JK, et al. Use of transient CD4 lymphocyte depletion to prolong transgene expression of E1-deleted adenoviral vectors. Hum Gene Ther. 1996;7:489–497.

    Article  CAS  PubMed  Google Scholar 

  41. Sawchuk SJ, et al. Anti-T-cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium. Hum Gene Ther. 1996;7:499–506.

    Article  CAS  PubMed  Google Scholar 

  42. Bouvet M, et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Therapy. 1998;5:189–195.

    Article  CAS  PubMed  Google Scholar 

  43. Fang B . Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression. Hum Gene Ther. 1995;6:1039–1044.

    Article  CAS  PubMed  Google Scholar 

  44. Jooss K, Ertl HC, Wilson JM . Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver. J Virol. 1998;72:2945–2954.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Engelhardt JF, Ye X, Doranz B, et al. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA. 1994;91:6196–6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vilquin JT . FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum Gene Ther. 1995;6:1391–1401.

    Article  CAS  PubMed  Google Scholar 

  47. Lochmuller H, et al. Immunosuppression by FK506 markedly prolongs expression of adenovirus-delivered transgene in skeletal muscles of adult dystrophic (mdx) mice. Biochem Biophys Res Commun. 1995;213:569–574.

    Article  CAS  PubMed  Google Scholar 

  48. Kass-Eisler A, Leinwand L, Gall J, Bloom B, Falck-Pedersen E . Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther. 1996;3:154–162.

    CAS  PubMed  Google Scholar 

  49. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins and promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319.

    Article  CAS  PubMed  Google Scholar 

  50. Kjellen L, Pereira HG . Role of adenovirus antigens in the induction of virus neutralizing antibody. J Gen Virol. 1968;2:177–185.

    Article  CAS  PubMed  Google Scholar 

  51. Wohlfart C . Neutralization of adenoviruses: kinetics, stoichiometry and mechanisms. J Virol. 1988;62:2321–2328.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells. Cell. 1993;75:477–486.

    Article  CAS  PubMed  Google Scholar 

  53. Bai M, Campisi L, Freimuth P . Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2. J Virol. 1994;68:5925–5932.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Y, Xiang H, Ertl J, Wilson JM . Upregulation of Class I major histocompatibility complex antigens by γ-IFN is necessary for T-cell mediated elimination of recombinant adenovirus-injected hepatocytes in vivo. Proc Natl Acad Sci USA. 1995;92:7257–7261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shenk T . Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, eds. Fields Virology. Philadelphia, PA: Lippincott-Raven; 1996:2111.

    Google Scholar 

  56. Yang Y, Ertl HC, Wilson JM . MHC Class I-restricted cytotoxic T-lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994;1:433–442.

    Article  CAS  PubMed  Google Scholar 

  57. Zsengeller ZK, Wert SE, Hull WM, et al. Persistence of replication-deficient adenovirus-mediated gene transfer in lung of immune-deficient (nu/nu) mice. Hum Gene Ther. 1995;6:457–467.

    Article  CAS  PubMed  Google Scholar 

  58. Amena R, Van Tsai, Ann Goudreau, et al. Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systematic gene therapy. Mol Ther. 2001:01:15-25-0016.

  59. Lorence RM, Roberts MS, Groene WS, et al. Replication-competent, oncolytic Newcastle disease virus for cancer therapy. In: Driever PH, Roabkin SD, eds. Replication-Competent Viruses for Cancer Therapy. Basel, Switzerland: Karger, In press.

  60. Wold WS, Hermiston TW, Tollefson AE . Adenovirus proteins that subvent host defenses. Trends Microbiol. 1994;2:437–443.

    Article  CAS  PubMed  Google Scholar 

  61. Wold WS, Tollefson AE, Hermiston TW . E3 transcription unit of adenovirus. Curr Top Microbiol Immunol. 1995;199:237–274.

    CAS  PubMed  Google Scholar 

  62. Horwitz MS, Tufariello J, Grunhaus A . Model system for studying the effects of adenovirus E3 gene on virulence in vivo. Curr Top Microbiol Immunol. 1995;199:195–211.

    CAS  PubMed  Google Scholar 

  63. Lee MG, Abina MA, Haddada H, et al. The constitutive expression of the immunomodulatory gp 19k protein in E1-E3 adenoviral vectors strongly reduces the host cytotoxic T-cell response against the vector. Gene Therapy. 1995;2:256–262.

    CAS  PubMed  Google Scholar 

  64. Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994;91:8802–8806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iian Y . Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral tumoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci USA. 1997;94:2587–2592.

    Article  Google Scholar 

  66. O’Neil WK . Toxicological comparison of E2A-deleted and first generation adenoviral vectors expressing alpha-1-antitrypsin after systemic delivery. Hum Gene Ther. 1998;9:1587–1598.

    Article  Google Scholar 

  67. Elkon KB . Tumor necrosis factor α plays a central role in immune-mediated clearance of adenoviral vectors. Immunology. 1997;94:9814–9819.

    CAS  Google Scholar 

  68. Benihoud K . Efficient: repeated adenovirus-mediated gene transfer in mice lacking both tumor necrosis factor alpha and lymphotoxin α. J Virol. 1998;72:9514–9525.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Alcami A, Koszinowski UH . Viral mechanisms of immune evasion. Immunol Today. 2000;21:447–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nash P, Barret JX, Cao S, et al. Immunomodulation by viruses: the myxoma virus story. Immunol Rev. 1999;168:103–120.

    Article  CAS  PubMed  Google Scholar 

  71. Smith GL, Symons JA, Khanna A, et al. Vaccinia virus immune evasion. Immunol Rev. 1997;159:137–154.

    Article  CAS  PubMed  Google Scholar 

  72. Smith VP, Bryant NA, Alcami A . Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol. 2000;81:1223–1230.

    Article  CAS  PubMed  Google Scholar 

  73. Spriggs M . One step ahead the game: viral immunomodulatory molecules. Annu Rev Immunol. 1996;14:101–130.

    Article  CAS  PubMed  Google Scholar 

  74. Saraiva M, Alcami A . CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol. 2001;75:226–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahr JA, Gooding LR . Immune evasion by adenoviruses. Immunol Rev. 1999;168:121–130.

    Article  CAS  PubMed  Google Scholar 

  76. Howar ST, Chan US, Smith GL . Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology. 1991;180:633–647.

    Article  Google Scholar 

  77. Smith CA, Davis T, Wignal JM, et al. T2 open reading frame from Shope fibroma virus encodes a soluble form of the TNF receptor. Biochem Biophys Res Commun. 1991;176:335–342.

    Article  CAS  PubMed  Google Scholar 

  78. Upton C, Macen JL, Schreiber M, et al. Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology. 1991;184:370–382.

    Article  CAS  PubMed  Google Scholar 

  79. Pecora A, Rizvi N, Cohen G . A phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol. 2002;20:2251–2266.

    Article  CAS  PubMed  Google Scholar 

  80. Hawkins LK, Johnson L, Bauzon M, et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 k/gp19K region. Gene Therapy. 2001;8:1123–1131.

    Article  CAS  PubMed  Google Scholar 

  81. Freytag S, Rogulski K, Paielli D, et al. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene and radiotherapy. Hum Gene Ther. 1998;9:1323–1333.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson L, Shen A, Boyle L, et al. Selectively replicating adenovirus targeting deregulated EZF activity are potent, systemic antitumor agents. Cancer Cell. 2002;1:325–337.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Nemunaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemunaitis, J., Cunningham, C., Tong, A. et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther 10, 341–352 (2003). https://doi.org/10.1038/sj.cgt.7700585

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700585

Keywords

This article is cited by

Search

Quick links