Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Replication of an integrin targeted conditionally replicating adenovirus on primary ovarian cancer spheroids

Abstract

Replication competent viruses hold promise for treatment of advanced cancers resistant to available therapeutic modalities. Although preliminary clinical results have substantiated their efficacy, preclinical development of these novel approaches is limited by assay substrates. The evaluation of candidate agents could be confounded by differences between primary tumor cells and tumor cell lines, as discordance in the levels of surface receptors relevant for viral entry has been reported. Since primary tumor cells are difficult to analyze ex vivo for longitudinal observation of virus replication, we developed three-dimensional aggregates or spheroids of unpassaged and purified ovarian cancer cells as a means for prolonging primary tumor cell viability and as a three-dimensional in vitro model for replicative viral infection. Ovarian cancer cells purified from ascites samples were sustained for 30 days while retaining the infection profile with tropism modified and unmodified adenoviruses (Ads). Cell line and primary cell spheroids were used to quantitate the replication and oncolytic potency of replicative Ads in preclinical testing for human ovarian cancer trials. Therefore, spheroids provide a method to sustain purified unpassaged primary ovarian cancer cells for extended periods and to allow evaluation of replicative viruses in a three-dimensional model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cavazzana-Calvo MH-BS, de Saint Basile G, Gross F, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288:669–672.

    Article  CAS  PubMed  Google Scholar 

  2. Kay MA, Manno CS, Ragni MV, Larson PJ, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24:257–261.

    Article  CAS  PubMed  Google Scholar 

  3. Isner JM, Asahara T . Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest. 1999;103:1231–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015 a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6:879–885.

    Article  CAS  PubMed  Google Scholar 

  5. Nemunaitis J, Swisher SG, Timmons T, et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol. 2000;18:609–622.

    Article  CAS  PubMed  Google Scholar 

  6. Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther. 2000;11:2197–2205.

    Article  CAS  PubMed  Google Scholar 

  7. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med. 2001;7:781–787.

    Article  CAS  PubMed  Google Scholar 

  8. http://www#.wiley.co.uk/genmed/clinical. Gene Therapy Clinical Trials Website. The Journal of Gene Medicine. Updated September 2001; John Wiley & Sons Ltd.

  9. Hemminki A, Alvarez RD . Adenoviruses In Oncology: A Viable Option? [In Process Citation]. BioDrugs. 2002;16.

  10. Roelvink PW, Mi Lee G, Einfeld DA, et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science. 1999;286:1568–1571.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Pong RC, Bergelson JM, et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 1999;59:325–330.

    CAS  PubMed  Google Scholar 

  12. Hemmi S, Geertsen R, Mezzacasa A, et al. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 1998;9:2363–2373.

    Article  CAS  PubMed  Google Scholar 

  13. Hemminki A, Dmitriev I, Liu B, et al. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001;61:6377–6381.

    CAS  PubMed  Google Scholar 

  14. Shinoura N, Yoshida Y, Tsunoda R, et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res. 1999;59:3411–3416.

    CAS  PubMed  Google Scholar 

  15. Douglas JT, Kim M, Sumerel LA, et al. Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res. 2001;61:813–817.

    CAS  PubMed  Google Scholar 

  16. Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 1998;58:5738–5748.

    CAS  PubMed  Google Scholar 

  17. Kasono K, Blackwell JL, Douglas JT, et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res. 1999;5:2571–2579.

    CAS  PubMed  Google Scholar 

  18. Fechner H, Wang X, Wang H, et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Ther. 2000;7:1954–1968.

    Article  CAS  PubMed  Google Scholar 

  19. Cripe TP, Dunphy EJ, Holub AD, et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001;61:2953–2960.

    CAS  PubMed  Google Scholar 

  20. Heinicke T, Hemmi S, Mauer D, et al. Transduction efficiency of adenoviral vectors in colorectal cancer cells is determined by the presence of the coxsackie adenovirus receptor. Mol. Ther. 2000;1:S126.

    Google Scholar 

  21. Dodson J, DeMarzo A, Schoenberg M, et al. Coxsackie adenovirus receptor immunohistochemical staining in superficial bladder tumors. Mol. Ther. 2000;1:S123.

    Google Scholar 

  22. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72:9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly FJ, Miller CR, Buchsbaum DJ, et al. Selectivity of TAG-72-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res. 2000;6:4323–4333.

    CAS  PubMed  Google Scholar 

  24. Vanderkwaak TJ, Wang M, Gomez-Navarro J, et al. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol. 1999;74:227–234.

    Article  CAS  PubMed  Google Scholar 

  25. Khuu H, Conner M, Vanderkwaak T, et al. Detection of coxsackie-adenovirus receptor (CAR) immunoreactivity in ovarian tumors of epithelial derivation. Applied Immunohistochemistry and Molecular Morphology. 1999;7:266–270.

    Google Scholar 

  26. Barker SD, Casado E, Gomez-Navarro J, et al. An immunomagnetic-based method for the purification of ovarian cancer cells from patient-derived ascites. Gynecol Oncol. 2001;82:57–63.

    Article  CAS  PubMed  Google Scholar 

  27. Casado E, Alemany R, Suzuki K, et al. A Conditionally Replicative Adenovirus with Enhanced Infectivity (Ad D24-RGD) for Ovarian Cancer Gene Therapy: Preclinical Evaluation of Selectivity, Oncolytic Potency and Chemotherapy Combination Strategies. Proceedings of the American Society of Clinical Oncology. 2001;20:253a.

    Google Scholar 

  28. Kunz-Schughart LA . Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int. 1999;23:157–161.

    Article  CAS  PubMed  Google Scholar 

  29. Oyvind PE, Visted T, Thorsen F, et al. Retroviral transfection of the lacZ gene from Liz-9 packaging cells to glioma spheroids. Int J Dev Neurosci. 1999;17:665–672.

    Article  CAS  PubMed  Google Scholar 

  30. Fujiwara T, Grimm EA, Mukhopadhyay T, et al. A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res. 1993;53:4129–4133.

    CAS  PubMed  Google Scholar 

  31. Grill J, Van Beusechem VW, Van Der Valk P, et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res. 2001;7:641–650.

    CAS  PubMed  Google Scholar 

  32. Krasnykh V, Belousova N, Korokhov N, et al. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol. 2001;75:4176–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mittal SK, McDermott MR, Johnson DC, et al. Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter. Virus Res. 1993;28:67–90.

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki K, Fueyo J, Krasnykh V, et al. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 2001;7:120–126.

    CAS  PubMed  Google Scholar 

  35. Johnston WW, Szpak CA, Lottich SC, et al. Use of a monoclonal antibody (B72.3) as an immunocytochemical adjunct to diagnosis of adenocarcinoma in human effusions. Cancer Res. 1985;45:1894–1900.

    CAS  PubMed  Google Scholar 

  36. Mansi L, Panza N, Lastoria S, et al. Diagnosis of ovarian cancer with radiolabelled monoclonal antibodies: our experience using 131I-B72.3. Int J Rad Appl Instrum B. 1989;16:127–135.

    Article  CAS  PubMed  Google Scholar 

  37. Schafer H, Schafer A, Kiderlen AF, et al. A highly sensitive cytotoxicity assay based on the release of reporter enzymes, from stably transfected cell lines. J Immunol Methods. 1997;204:89–98.

    Article  CAS  PubMed  Google Scholar 

  38. Wildner O, Morris JC . The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res. 2000;60:4167–4174.

    CAS  PubMed  Google Scholar 

  39. Adachi Y, Reynolds PN, Yamamoto M, et al. A midkine promoter-based conditionally replicative adenovirus for treatment of pediatric solid tumors and bone marrow tumor purging. Cancer Res. 2001;61:7882–7888.

    CAS  PubMed  Google Scholar 

  40. Haviv YS, Blackwell JL, Kanerva A, et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res. 2002;62:4273–4281.

    CAS  PubMed  Google Scholar 

  41. Hemminki A, Belousova N, Zinn KR, et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther. 2001;4:223–231.

    Article  CAS  PubMed  Google Scholar 

  42. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 2001;8:89–98.

    Article  CAS  PubMed  Google Scholar 

  43. Nemunaitis J, Ganly I, Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 2000;60:6359–6366.

    CAS  PubMed  Google Scholar 

  44. Reid T et al. Hepatic artery infusion of ONYX-015, a replication selective adenovirus, in combination with 5-FU/leucovorin for gastrointestinal carcinoma metastatic to the liver: A Phase I/II clinical trial. Proceedings of the American Society of Clinical Oncology. 2001;19:953.

    Google Scholar 

  45. Okegawa T, Li Y, Pong RC, et al. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res. 2000;60:5031–5036.

    CAS  PubMed  Google Scholar 

  46. Anders M, Ding RX, Lipner EM, et al. Inhibition of the MAPK pathway Up-Regulates the Human Coxsackie and Adenovirus Receptor (CAR) and Increases the Infectivity of Cancer Cells with Adenovirus. Proc. Am. Assoc. Cancer Res. 2001;42:703.

    Google Scholar 

  47. Cohen CJ, Shieh JT, Pickles RJ, et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA. 2001;98:15191–15196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okegawa T, Pong RC, Li Y, et al. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res. 2001;61:6592–6600.

    CAS  PubMed  Google Scholar 

  49. Laderoute KR, Murphy BJ, Short SM, et al. Enhancement of transforming growth factor-alpha synthesis in multicellular tumour spheroids of A431 squamous carcinoma cells. Br J Cancer. 1992;65:157–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murphy BJ, Laderoute KR, Vreman HJ, et al. Enhancement of heme oxygenase expression and activity in A431 squamous carcinoma multicellular tumor spheroids. Cancer Res. 1993;53:2700–2703.

    CAS  PubMed  Google Scholar 

  51. Karbach U, Gerharz CD, Groebe K, et al. Rhabdomyosarcoma spheroids with central proliferation and differentiation. Cancer Res. 1992;52:474–477.

    CAS  PubMed  Google Scholar 

  52. Kawata M, Sekiya S, Kera K, et al. Neural rosette formation within in vitro spheroids of a clonal human teratocarcinoma cell line, PA-1/NR: role of extracellular matrix components in the morphogenesis. Cancer Res. 1991;51:2655–2669.

    CAS  PubMed  Google Scholar 

  53. Hauptmann S, Denkert C, Lohrke H, et al. Integrin expression on colorectal tumor cells growing as monolayers, as multicellular tumor spheroids, or in nude mice. Int J Cancer. 1995;61:819–825.

    Article  CAS  PubMed  Google Scholar 

  54. Waleh NS, Gallo J, Grant TD, et al. Selective down-regulation of integrin receptors in spheroids of squamous cell carcinoma. Cancer Res. 1994;54:838–843.

    CAS  PubMed  Google Scholar 

  55. Paulus W, Huettner C, Tonn JC . Collagens, integrins and the mesenchymal drift in glioblastomas: a comparison of biopsy specimens, spheroid and early monolayer cultures. Int J Cancer. 1994;58:841–846.

    Article  CAS  PubMed  Google Scholar 

  56. Mansbridge JN, Knuchel R, Knapp AM, et al. Importance of tyrosine phosphatases in the effects of cell-cell contact and microenvironments on EGF-stimulated tyrosine phosphorylation. J Cell Physiol. 1992;151:433–442.

    Article  CAS  PubMed  Google Scholar 

  57. De Wet JR, Wood KV, DeLuca M, et al. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987;7:725–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwarzenberger P, Hunt JD, Robert E, et al. Receptor-targeted recombinant adenovirus conglomerates: a novel molecular conjugate vector with improved expression characteristics. J Virol. 1997;71:8563–8571.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bauerschmitz GJ, Lam JT, Kanerva A, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 2002;62:1266–1270.

    CAS  PubMed  Google Scholar 

  60. Rancourt C, Piche A, Gomez-Navarro J, et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy. Clin Cancer Res. 1999;5:43–50.

    CAS  PubMed  Google Scholar 

  61. Balague C, Noya F, Alemany R, et al. Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes. J Virol. 2001;75:7602–7611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. La Thangue NB, Rigby PW . An adenovirus E1A-like transcription factor is regulated during the differentiation of murine embryonal carcinoma stem cells. Cell. 1987;49:507–513.

    Article  CAS  PubMed  Google Scholar 

  63. Spergel JM, Chen-Kiang S . Interleukin 6 enhances a cellular activity that functionally substitutes for E1A protein in transactivation. Proc Natl Acad Sci USA. 1991;88:6472–6476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Imperiale MJ, Kao HT, Feldman LT, et al. Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Mol Cell Biol. 1984;4:867–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res. 1994;54:3963–3966.

    CAS  PubMed  Google Scholar 

  66. Mineta T, Rabkin SD, Yazaki T, et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–943.

    Article  CAS  PubMed  Google Scholar 

  67. Mastrangelo MJ, Eisenlohr LC, Gomella L, et al. Poxvirus vectors: orphaned and underappreciated. J Clin Invest. 2000;105:1031–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lorence RM, Katubig BB, Reichard KW, et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res. 1994;54:6017–6021.

    CAS  PubMed  Google Scholar 

  69. Van Pachterbeke C, Tuynder M, Cosyn JP, et al. Parvovirus H-1 inhibits growth of short-term tumor-derived but not normal mammary tissue cultures. Int J Cancer. 1993;55:672–677.

    Article  CAS  PubMed  Google Scholar 

  70. Coffey MC, Strong JE, Forsyth PA, et al. Reovirus therapy of tumors with activated Ras pathway. Science. 1998;282:1332–1334.

    Article  CAS  PubMed  Google Scholar 

  71. Peng KW, Ahmann GJ, Pham L, et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood. 2001;98:2002–2007.

    Article  CAS  PubMed  Google Scholar 

  72. Logg CR, Tai CK, Logg A, et al. A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther. 2001;12:921–932.

    Article  CAS  PubMed  Google Scholar 

  73. Pavlovic J, Schultz J, Moelling K . Selective lysis of tumor cells with a deficiency in the interferon type I system with influenza A virus in vivo. Gene Therapy. 2001;8:S10.

    Google Scholar 

  74. Gromeier M, Lachmann S, Rosenfeld MR, et al. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 2000;97:6803–6808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000;6:821–825.

    Article  CAS  PubMed  Google Scholar 

  76. Barsov E, Oh J, Zheng H, et al. RCAS vectors: new applications and old problems. Gene Therapy. 2001;8:S2.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent technical assistance of Jan Shultz, Sherri Coffman, and Mitzi Fincher. Gene transfer assays were performed in part at the UAB Gene Therapy Center Correlative Laboratories for Human Clinical Trials. This study was supported by the United States Public Health Service Training Grant T32 CA75930, the University of Alabama Health Services Foundation Interdisciplinary Corroborative Laboratory for Gene Therapy Clinical Trials, NIH grants CA74243, HL 63736, RO1 CA83821, IT32 CA75930, P50 CA83591, P50 CA89019, PC 99-1018, DAMD 17-00-1-0002, RO1 CA94084, RO1 CA93796, DAMD 17-98-1-8571, the Lustgarten Foundation LF043, the CapCure Foundation, the Damon Runyon-Walter Winchell Cancer Research Fund, the Sigrid Juselius Foundation, the Emil Aaltonen Foundation, the Maud Kuistila Foundation, and the Finnish Medical Foundation, the Academy of Finland, the Finnisha Cancer Society, Biocentrum Helsinki, University of Helsinki Internal Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akseli Hemminki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, J., Bauerschmitz, G., Kanerva, A. et al. Replication of an integrin targeted conditionally replicating adenovirus on primary ovarian cancer spheroids. Cancer Gene Ther 10, 377–387 (2003). https://doi.org/10.1038/sj.cgt.7700578

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700578

Keywords

This article is cited by

Search

Quick links