Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

(E)-5-(2-Bromovinyl)-2′-deoxyuridine potentiates ganciclovir-mediated cytotoxicity on herpes simplex virus-thymidine kinase–expressing cells

Abstract

Tumor cells expressing the thymidine kinase gene of the herpes simplex virus (HSV-tk) are rendered highly susceptible to the cytotoxic effects of different antiherpes drugs. In an attempt to enhance cytotoxicity of this therapeutic approach in glioma and other tumor cell lines transduced with the HSV-tk gene, we evaluated tumor cell killing following co-administration of two different prodrugs metabolized by HSV-tk, (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU), and ganciclovir (GCV). In 8 of 12 cell lines investigated, addition of BVDU in concentrations showing no cytotoxic effect or only limited cytotoxicity could enhance GCV-mediated cell killing by as much as one order of magnitude. In co-cultures consisting of HSV-tk+ (9L STK) and HSV-tk (9L wild-type) cells, we also observed potentiation of GCV-mediated cytotoxicity in the presence of BVDU, suggesting strongly enhanced bystander cell killing. BVDU is thought to exert its cytotoxic effect through inhibition of thymidylate synthase activity or by incorporation into replicating DNA. Both effects could be observed in all HSV-tk–expressing cells investigated, including cell lines which did not exhibit cytotoxicity after incubation with BVDU. These findings argue against current concepts of BVDU-mediated cytotoxicity in HSV-tk–expressing cells. Taken together, our data suggest that gene therapy utilizing prodrug activating enzymes may be rendered more effective by simultaneous treatment with two different prodrugs metabolized by the same enzyme. Cancer Gene Therapy (2001) 8, 388–396

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Clercq E . In search of a selective antiviral chemotherapy Clin Microbiol Rev 1997 10: 674–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishiyama Y, Rapp F . Anticellular effects of 9-(2-hydroxyethoxymethyl)guanine against herpes simplex virus–transformed cells J Gen Virol 1979 45: 227–230

    Article  CAS  PubMed  Google Scholar 

  3. Furman PA, McGuirt PV, Keller PM, Fyfe JA, Elion GB . Inhibition by acyclovir of cell growth and DNA synthesis of cells biochemically transformed with herpes virus genetic information Virology 1980 102: 420–430

    Article  CAS  PubMed  Google Scholar 

  4. Balzarini J, De Clercq E, Ayusawa D, Seno T . Murine mammary FM3A carcinoma cells transformed with the herpes simplex virus type 1 thymidine kinase gene are highly sensitive to the growth-inhibitory properties of (E)-5-(2-bromovinyl)-2′-deoxyuridine and related compounds FEBS Lett 1985 185: 95–100

    Article  CAS  PubMed  Google Scholar 

  5. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  6. Moolten FL, Wells JM . Curability of tumors bearing the herpes thymidine kinase transferred by a retroviral vector J Natl Cancer Inst 1990 82: 297–300

    Article  CAS  PubMed  Google Scholar 

  7. Mullen CA . Metabolic suicide genes in gene therapy Pharmacol Ther 1994 63: 199–207

    Article  CAS  PubMed  Google Scholar 

  8. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM . In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  9. Ram Z, Culver K, Oshiro E, et al . Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nat Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  10. Mar E-C, Chiou J-F, Cheng Y-C, Huang E-S . Inhibition of cellular DNA polymerase alpha and human cytomegalovirus-induced DNA polymerase by the triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine J Virol 1985 53: 776–780

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reardon JE . Herpes simplex virus type 1 and human DNA polymerase interactions with 2′-deoxyguanosine 5′-triphosphate analogues J Biol Chem 1989 264: 19039–19044

    CAS  PubMed  Google Scholar 

  12. Balzarini J, Bohman C, De Clercq E . Differential mechanism of cytostatic effect of (E)-5-(2-bromovinyl)-2′-deoxyuridine, 9-(1,3-dihydroxy-2-propoxymethyl)guanine, and other antiherpetic drugs on tumor cells transfected by the thymidine kinase gene of herpes simplex virus type 1 or type 2 J Biol Chem 1993 268: 6332–6337

    CAS  PubMed  Google Scholar 

  13. Freeman SM, Abboud CN, Whartenby KA, et al . The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  14. Samejima Y, Meruelo D . Bystander killing induces apoptosis and is inhibited by forskolin Gene Ther 1995 2: 50–58

    CAS  PubMed  Google Scholar 

  15. Colombo BM, Benedetti S, Ottolenghi S, et al . The “bystander effect”: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice Hum Gene Ther 1995 6: 763–772

    Article  CAS  PubMed  Google Scholar 

  16. Hamel W, Magnelli L, Chiarugi VP, Israel MA . Herpes simplex virus thymidine kinase/ganciclovir–mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2702

    CAS  PubMed  Google Scholar 

  17. Allaudeen HS, Kozarich JW, Bertino JR, De Clercq E . On the mechanism of selective inhibition of herpes virus replication by (E)-5-(2-bromovinyl)-2′-deoxyuridine Proc Natl Acad Sci USA 1981 78: 2698–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benoit Y, Laureys G, Delbeke MJ, De Clercq E . Oral BVDU treatment of varicella and zoster in children with cancer Eur J Pediatr 1985 143: 198–202

    Article  CAS  PubMed  Google Scholar 

  19. Tricot G, De Clercq E, Boogaerts MA, Verwilghen RL . Oral bromovinyldeoxyuridine therapy for herpes simplex and varicella zoster virus infections in severely immunosuppressed patients: a preliminary clinical trial J Med Virol 1986 18: 11–20

    Article  CAS  PubMed  Google Scholar 

  20. Wildiers J, De Clercq E . Oral (E)-5-(2-bromovinyl)-2′-deoxyuridine treatment of severe herpes zoster in cancer patients Eur J Cancer Clin Oncol 1984 20: 471–476

    Article  CAS  PubMed  Google Scholar 

  21. Wutzler P, Wutke K, Barwolff D, Reefschlager J . 5-(2-bromovinyl)-2′-deoxyuridine therapy of herpes zoster diseases in patients with malignant primary diseases Z Gesamte Inn Med 1988 43: 677–680

    CAS  PubMed  Google Scholar 

  22. Balzarini J, De Clercq E, Verbruggen A, Ayusawa D, Shimizu K, Seno T . Thymidylate synthase is the principal target enzyme for the cytostatic action of (E)-5-(2-bromovinyl)-2′-deoxyuridine against murine mammary carcinoma (FM3A) cells transformed with the herpes simplex virus type 1 or type 2 thymidine kinase gene Mol Pharmacol 1987 32: 410–416

    CAS  PubMed  Google Scholar 

  23. Descamps J, De Clercq E . Specific phosphorylation of (E)-5-(2-iodovinyl)-2′-deoxyuridine by herpes simplex virus–infected cells J Biol Chem 1981 256: 5973–5976

    CAS  PubMed  Google Scholar 

  24. Ayisi NK, De Clercq E, Wall RA, Hughes H, Sacks SL . Metabolic fate of (E)-5-(2-bromovinyl)-2′-deoxyuridine in herpes simplex virus– and mock-infected cells Antimicrob Agents Chemother 1984 26: 762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Degreve B, Andrei G, Izquierdo M, et al . Varicella zoster virus thymidine kinase gene and antiherpetic pyrimidine nucleoside analogues in a combined gene/chemotherapy treatment for cancer Gene Ther 1997 4: 1107–1114

    Article  CAS  PubMed  Google Scholar 

  26. Miller AD, Buttimore C . Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production Mol Cell Biol 1986 6: 2895–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller AD, Miller DG, Garcia JV, Lynch CM . Use of retroviral vectors for gene transfer and expression Methods Enzymol 1993 217: 581–599

    Article  CAS  PubMed  Google Scholar 

  28. Fick J, Barker FGI, Dazin P, Westphale EM, Beyer EC, Israel MA . The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicityin vitro Proc Natl Acad Sci USA 1995 92: 11071–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balzarini J, De Clercq E . Strategies for the measurement of the inhibitory effects of thymidine analogs on the activity of thymidylate synthase in intact murine leukemia L1210 cells Biochim Biophys Acta 1984 785: 36–45

    Article  CAS  PubMed  Google Scholar 

  30. Bi WL, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV-tk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  31. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H . Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins Proc Natl Acad Sci USA 1996 93: 1831–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dilber MS, Abedi MR, Christensson B, et al . Gap junctions promote the bystander effect of herpes simplex virus thymidine kinasein vivo Cancer Res 1997 57: 1523–1528

    CAS  PubMed  Google Scholar 

  33. Elshami AA, Saavedra A, Zhang H, et al . Gap junctions play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir systemin vitro Gene Ther 1996 3: 85–92

    CAS  PubMed  Google Scholar 

  34. Greco WR, Bravo G, Parsons JC . The search for synergy: a critical review from a response surface perspective Pharmacol Rev 1995 47: 331–385

    CAS  PubMed  Google Scholar 

  35. Rideout DC, Chou T-C . Synergism, antagonism, and potentiation in chemotherapy. An overview In: Rideout DC, Chou T-C, eds.Synergism and Antagonism in Chemotherapy San Diego, CA: Academic Press 1991 3–60

  36. Berenbaum MC . What is synergy? Pharmacol Rev 1989 41: 93–141

    CAS  PubMed  Google Scholar 

  37. Rogulski KR, Kim JH, Kim SH, Freytag SO . Glioma cells transduced with anEscherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity Hum Gene Ther 1997 8: 73–85

    Article  CAS  PubMed  Google Scholar 

  38. Rogulski KR, Zhang K, Kolozsvary A, Kim JH, Freytag SO . Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy Clin Cancer Res 1997 3: 2081–2088

    CAS  PubMed  Google Scholar 

  39. Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA . Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies J Natl Cancer Inst 1998 90: 370–80

    Article  CAS  PubMed  Google Scholar 

  40. Uckert W, Kammertons T, Haack K, et al . Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cellsin vivo Hum Gene Ther 1998 9: 855–865

    Article  CAS  PubMed  Google Scholar 

  41. Wildner O, Blaese RM, Candotti F . Enzyme prodrug gene therapy: synergistic use of the herpes simplex virus–cellular thymidine kinase/ganciclovir system and thymidylate synthase inhibitors for the treatment of colon cancer Cancer Res 1999 59: 5233–5238

    CAS  PubMed  Google Scholar 

  42. Allaudeen HS, Chen MS, Lee JJ, De Clercq E, Prusoff WH . Incorporation ofE-5-(2-halovinyl)-2′-deoxyuridines into deoxyribonucleic acids of herpes simplex virus type 1–infected cells J Biol Chem 1982 257: 603–606

    CAS  PubMed  Google Scholar 

  43. Fahrig R . Anti-recombinogenic and convertible co-mutagenic effects of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and other 5-substituted pyrimidine nucleoside analogs inS. cerevisiae MP1 Mutat Res 1996 372: 133–139

    Article  CAS  PubMed  Google Scholar 

  44. Tamura M, Shimizu K, Yamada M, Miyao Y, Hayakawa T, Ikenaka K . Targeted killing of migrating glioma cells by injection of HTK-modified glioma cells Hum Gene Ther 1997 8: 381–391

    Article  PubMed  Google Scholar 

  45. Grignet-Debrus C, Calberg-Bacq CM . Potential of varicella zoster virus thymidine kinase as a suicide gene in breast cancer cells Gene Ther 1997 4: 560–569

    Article  CAS  PubMed  Google Scholar 

  46. Degreve B, De Clercq E, Balzarini J . Bystander effect of purine nucleoside analogues in HSV-tk suicide gene therapy is superior to that of pyrimidine nucleoside analogues Gene Ther 1999 6: 62–170

    Article  Google Scholar 

  47. Grignet-Debrus C, Cool V, Baudson N, et al . Comparativein vitro andin vivo cytotoxic activity of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and its arabinosyl derivative, (E)-5-(2-bromovinyl)-1-beta- D-arabinofuranosyluracil (BVaraU), against tumor cells expressing either the varicella zoster or the herpes simplex virus thymidine kinase Cancer Gene Ther 2000 7: 215–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Preuss Foundation, Anne and Jason Farber Foundation, and Betz Foundation and from the National Institute of Health Grant no. 5 P01 CA13525. W. H. was supported by a fellowship from the Deutsche Forschungsgemeinschaft. We thank H. Meissner and S. Zapf for help with tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamel, W., Zirkel, D., Mehdorn, H. et al. (E)-5-(2-Bromovinyl)-2′-deoxyuridine potentiates ganciclovir-mediated cytotoxicity on herpes simplex virus-thymidine kinase–expressing cells. Cancer Gene Ther 8, 388–396 (2001). https://doi.org/10.1038/sj.cgt.7700322

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700322

Keywords

This article is cited by

Search

Quick links