Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The cytotoxic effect of E1B 55-kDa mutant adenovirus on human hepatocellular carcinoma cell lines

Abstract

It has been suggested the E1B 55 kDa mutant adenovirus dl1520 can selectively killp53-deficient human tumor cells. In this study, we examined the cytotoxic effect of dl1520 on nine human hepatocellular carcinoma (HCC) cell lines with differentp53 genetic and functional status. The results showed that HCC cell lines with deleted or mutantp53 gene and reducedp53 transcriptional activities were more susceptible to dl1520-induced cytolysis. Hep3B (p53-null) and HepG2 (p53-wt) cells were arrested at G2/M phase when cytolysis occurred. Cyclin-dependent kinase inhibitor (CDKI) p21Waf-1/Cip-1 was downregulated 24 hours after dl1520 infection in HepG2 cells and increased when cytolysis occurred. No p21 expression was detected in Hep3B cells. DNA fragmentation was found in both Hep3B and HepG2 cells after dl1520 infection. Bax expression increased in dl1520-infected HepG2 cells but not in Hep3B cells. Notably, three Bax-like proteins, molecular mass around 40 to 80 kDa, accumulated 48 hours after adenovirus infection in Hep3B cells but not in HepG2 cells. These results suggest that the susceptibility of HCC cells to dl1520-induced cytolysis is related to bothp53 genotype and functional status, and is mediated by both cell cycle disturbance and apoptosis. Cancer Gene Therapy (2001) 8, 333–341

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Whyte P, Buchkovich KJ, Horowitz JM, et al . Association between an oncogene and anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product Nature 1988 334: 124–129

    Article  CAS  PubMed  Google Scholar 

  2. Weinstraub SJ, Prater CA, Dean DC . Retinoblastoma protein switches the E2F site from positive to negative element Nature 1992 358: 259–261

    Article  Google Scholar 

  3. Weinstraub SJ, Chow KN, Luo RX, et al . Mechanism of active transcriptional repression by the retinoblastoma protein Nature 1995 375: 812–815

    Article  Google Scholar 

  4. Yang XJ, Ogryzko VV, Nishikawa J, et al . A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A Nature 1996 382: 319–324

    Article  CAS  PubMed  Google Scholar 

  5. Lowe SW, Ruley HE . Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis Genes Dev 1993 7: 535–545

    Article  CAS  PubMed  Google Scholar 

  6. Teodoro JG, Shore GC, Branton PE . Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms Oncogene 1995 11: 467–474

    CAS  PubMed  Google Scholar 

  7. Marcellus RC, Teodoro JG, Wu T, et al . Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis J Virol 1996 70: 6207–6215

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Marcellus RC, Lavoie JN, Boivin D, et al . The early region 4 orf4 protein of human adenovirus type 5 induced p53-independent cell death by apoptosis J Virol 1998 72: 7144–7153

    CAS  PubMed  PubMed Central  Google Scholar 

  9. White E, Cipriani R, Sabbatini P, et al . Adenovirus E1B 19 kilodalton protein overcomes the cytotoxicity of E1A proteins J Virol 1991 65: 2968–2978

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao L, Debbas M, Sabbatini P, et al . The adenovirus E1A protein\as1q induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins Proc Natl Acad Sci USA 1992 89: 7742–7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han J, Sabbatini P, Perez D, et al . The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein Genes Dev 1996 10: 461–477

    Article  CAS  PubMed  Google Scholar 

  12. Yew PR, Berk AJ . Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein Nature 1992 357: 82–85

    Article  CAS  PubMed  Google Scholar 

  13. Yew PR, Lui X, Berk AJ . Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53 Genes Dev 1994 8: 190–202

    Article  CAS  PubMed  Google Scholar 

  14. Dobner T, Horikoshi N, Rubenwolf S, et al . Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor Science 1996 272: 1470–1473

    Article  CAS  PubMed  Google Scholar 

  15. Querido E, Marcellus RC, Lai A, et al . Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells J Virol 1997 71: 3788–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Steegenga W, Riteco N, Jochemsen AG, et al . The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells Oncogene 1998 16: 349–357

    Article  CAS  PubMed  Google Scholar 

  17. Nevel SM, Spruss T, Wolf H, et al . The adenovirus E4orf6 protein contributes to malignant transformation by antagonizeing E1A-induced accumulation of the tumor suppressor protein p53 Oncogene 1999 18: 9–17

    Article  Google Scholar 

  18. Rubenwolf S, Schutt H, Nevels M, et al . Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex J Virol 1997 71: 1115–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bischoff JR, Kirm DH, Williams A, et al . An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  20. Feitelson MA, Zhu M, Duan LX, et al . Hepatitis Bx antigen and p53 are associatedin vitro and in liver tissue from patients with primary hepatocellular carcinoma Oncogene 1993 8: 1109–1117

    CAS  PubMed  Google Scholar 

  21. Truant R, Antunovic J, Greenblatt J, et al . Direct interaction of hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation J Virol 1995 69: 1851–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ueda H, Ullrich SJ, Gangemi JD, et al . Functional inactivation but not structural mutation of p53 causes liver cancer Nat Genet 1995 9: 41–47

    Article  CAS  PubMed  Google Scholar 

  23. Fuchs B, O'Connor D, Fallis L, et al . p53 phosphorylation mutants retain transcription activity Oncogene 1995 10: 789–793

    CAS  PubMed  Google Scholar 

  24. Barker DD, Berk AJ . Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection Virology 1987 156: 107–121

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T, eds Molecular Cloning. 2nd ed Cold Spring Harbor: Cold Spring Harbor Laboratory Press 1989

    Google Scholar 

  26. Craig C, Wersto R, Kim M, et al . A recombinant adenovirus expressing p27kip1 induces cell cycle arrest and loss of cycli-Cdk activity in human breast cancer cells Oncogene 1997 14: 2283–2289

    Article  CAS  PubMed  Google Scholar 

  27. Taniguchi T, Kakker AK, Tuddenham EG, et al . Enhanced expression of urokinase receptor induced through the tissue factor-factor VIIa pathway in human pancreatic cancer Cancer Res 1998 58: 4461–4467

    CAS  PubMed  Google Scholar 

  28. Goodrum FD, Ornelles DA . p53 status does not determine outcome of E1B 55-kilodaton mutant adenovirus lytic infection J Virol 1998 72: 9479–9490

    CAS  PubMed  PubMed Central  Google Scholar 

  29. El-Deiry WS, Tokino T, Velculescu VE, et al . WAF-1, a potential mediator of p53 tumor suppression Cell 1993 75: 817–825

    Article  CAS  PubMed  Google Scholar 

  30. Harper JW, Adami GR, Wei N, et al . The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Cell 1993 75: 805–816

    Article  CAS  PubMed  Google Scholar 

  31. Xiong Y, Hannon GJ, Zhang D, et al . p21 is a universal inhibitor of cyclin kinases Nature 1993 366: 701–704

    Article  CAS  PubMed  Google Scholar 

  32. Cayrol C, Knibiehler M, Ducommun B . p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells Oncogene 1998 16: 311–320

    Article  CAS  PubMed  Google Scholar 

  33. Dulic V, Stein GH, Far DF, et al . Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition Mol Cell Biol 1998 18: 546–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niculescu AB, Chen X, Smeets M, et al . Effects of p21Cip1/Waf1 at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication Mol Cell Biol 1998 18: 629–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Zou H, Slaughter C, et al . DEF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis Cell 1997 89: 175–184

    Article  CAS  PubMed  Google Scholar 

  36. Enari M, Sakahira H, Yokoyama H, et al . A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD Nature 1998 391: 43–50

    Article  CAS  PubMed  Google Scholar 

  37. Milyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Cell 1995 80: 293–299

    Article  Google Scholar 

  38. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998 281: 1322–1326

    Article  CAS  PubMed  Google Scholar 

  39. Rothmann T, Hengstermann A, Whitaker NJ, et al . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells J Virol 1998 72: 9470–9478

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Turnell AS, Grand RJA, Gallimore PH . The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status J Virol 1999 73: 2074–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shenk T . Adenoviridae: the viruses and their replication In: Field BN, Knipe DM, Howley PM, et al, eds.Fields Virology. 3rd ed Philadelphia, PA: Lippincott-Raven Publishers 1996 2111–2148

  42. Bergelson JM, Cunningham JA, Droguett G, et al . Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Pong RC, Bergelson JM, et al . Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy Cancer Res 1999 59: 325–330

    CAS  PubMed  Google Scholar 

  44. Strasser-Wozak EM, Hartmann BL, Geley S, et al . Irradiation induces G2/M cell cycle arrest and apoptosis in p53-deficient lymphoblastic leukemia cells without affecting Bcl-2 and Bax expression Cell Death Differ. 1998 5: 687–693

    Article  CAS  PubMed  Google Scholar 

  45. Sleiman RJ, Stewart BW . Early caspase activation in leukemic cells subject to etoposide-induced G2-M arrest: evidence of commitment to apoptosis rather than mitotic cell death Clin Cancer Res 2000 6: 3756–3765

    CAS  PubMed  Google Scholar 

  46. Xia W, Spector S, Hardy L, et al . Tumor selective G2/M cell cycle arrest and apoptosis of epithelial and hematological malignancies by BBL22, 2 benzazepine Proc Natl Acad Sci USA 2000 97: 7494–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Missero C, Calautti E, Eckner R, et al . Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation Proc Natl Acad Sci USA 1995 92: 5451–5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steegenga WT, van Laar T, Riteco N, et al . Adenovirus E1A proteins inhibit activation of transcription by p53 Mol Cell Biol 1996 16: 2101–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Somasundaram K, El-Deiry WS . Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region Oncogene 1997 14: 1047–1057

    Article  CAS  PubMed  Google Scholar 

  50. Datto MB, Hu PP, Kowalik TF, et al . The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B Mol Cell Biol 1997 17: 2030–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waga S, Hannon GJ, Beach D, et al . The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA Nature 1994 369: 574–578

    Article  CAS  PubMed  Google Scholar 

  52. Buckbinder L, Talbott R, Valesco-Miguel S, et al . Induction of the growth inhibitor IGF-binding protein 3 by p53 Nature 1995 377: 646–649

    Article  CAS  PubMed  Google Scholar 

  53. Oda E, Ohki R, Murasawa H, et al . Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis Science 2000 288: 1053–1058

    Article  CAS  PubMed  Google Scholar 

  54. Lin Y, Ma W, Benchimol S . Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis Nat Genet 2000 26: 124–127

    Article  Google Scholar 

  55. Gross A, McDonnell JM, Korsmeyer SJ . BCL-2 family members and the mitochondria in apoptosis Genes Dev 1999 13: 1899–1911

    Article  CAS  PubMed  Google Scholar 

  56. Hengartner MO . The biochemistry of apoptosis Nature 2000 107: 770–776

    Article  Google Scholar 

  57. Vander Heiden MG, Thompson CB . Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999 1: E209–E216

    Article  CAS  PubMed  Google Scholar 

  58. Fearnhead HO, Rodriguez J, Govek E, et al . Oncogene-dependent apoptosis is mediated by caspase-9 Proc Natl Acad Sci USA 1998 95: 13664–13669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Natural Science Foundation (NNSF) of China, the Shanghai Commission of Science and Technology, Shanghai Bureau of Public Health and The State Commission of Education of People's Republic of China to Y. J. Guo, J. Zhao and L. X. Wei. We specially thank the Commission of Science and Technology of Shanghai Pu-Dong New District for the strong financial support through a New District Key Grant. We thank Berk A. J. (Los Angles, CA) for kindly providing adenovirus dl1520 and Dr. Miltry R. (London, UK) for generous help in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Wang, H., Wei, L. et al. The cytotoxic effect of E1B 55-kDa mutant adenovirus on human hepatocellular carcinoma cell lines. Cancer Gene Ther 8, 333–341 (2001). https://doi.org/10.1038/sj.cgt.7700316

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700316

Keywords

This article is cited by

Search

Quick links