Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Associations between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada

Abstract

A longitudinal study investigating personal exposures to PM2.5, nitrogen dioxide (NO2), and carbon monoxide (CO) for cardiac compromised individuals was conducted in Toronto, Canada. The aim of the study was (1) to examine the distribution of exposures to PM2.5, NO2, and CO; and (2) to investigate the relationship between personal exposures and fixed-site ambient measurements of PM2.5, NO2, and CO. In total, 28 subjects with coronary artery disease wore the Rupprecht & Patashnick ChemPass Personal Sampling System one day a week for a maximum of 10 weeks. The mean (SD) personal exposures were 22 μg m−3 (42), 14 p.p.b. (6), and 1.4 p.p.m (0.5) for PM2.5, NO2, and CO, respectively. PM2.5 and CO personal exposures were greater than central fixed-site ambient measurements, while the reverse pattern was observed for NO2. Ambient PM2.5 and NO2 were correlated with personal exposures to PM2.5 and NO2 with median Spearman's correlation coefficients of 0.69 and 0.57, respectively. The correlations between personal exposures and ambient measurements made closest to the subjects' homes or the average of all stations within the study were not stronger than the correlation between personal exposures and central fixed-site measurements. Personal exposures to PM2.5 were correlated with personal exposures to NO2 (median Spearman's correlation coefficient of 0.43). This study suggests that central fixed-site measurements of PM2.5 and NO2 may be treated as surrogates for personal exposures to PM2.5 and NO2 in epidemiological studies, and that NO2 is a potential confounder of PM2.5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ballester F., Tenías J.M., and Perez-Hoyos S. Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. J Epidemiol Commun Health 2001: 55: 57–65.

    Article  CAS  Google Scholar 

  • Brauer M., Ebelt S.T., Fisher T.V., Brumm J., Petkau A.J., and Vedal, S. Exposure of chronic obstructive pulmonary disease patients to particles: respiratory and cardiovascular health effects. J Exp Anal Environ Epidemiol 2001: 11 (6): 490–500.

    Article  CAS  Google Scholar 

  • Brook J.R., Dann T., and Bonvalot Y. Observations and interpretations from the Canadian Fine Particle Monitoring Program. J Air Waste Manage Assoc 1999: 49: 35–44.

    Article  Google Scholar 

  • Burnett R.T., Cakmak S., Brook J.R., and Krewski D. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environ Health Perspect 1997: 105 (6): 614–620.

    Article  CAS  Google Scholar 

  • Burnett R.T., Smith-Doiron M., Stieb D., Cakmak S., and Brook J.R. Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch Environ Health 1999: 54: 130–139.

    Article  CAS  Google Scholar 

  • Burnett R.T., Stieb D., Brook J.R., Cakmak S., Dales R., Raizenne M.E., Vincent R., and Dann T. The short-term effects of nitrogen dioxide on mortality in Canadian cities, 2003, in press.

  • Chang I.-T., Sarnat J.A., Wolfson J.M., Rojas-Bracho L., Suh H.H., and Koutrakis P. Development of a personal multi-pollutant exposure sampler for particulate matter and criteria gases. Pollution Atmospherique 1999: 40: 31–39.

    Google Scholar 

  • Chock D.P., Winkler S.L., and Chen C. A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. J Air Waste Manage Assoc 2000: 50: 1481–1500.

    Article  CAS  Google Scholar 

  • Demokritou P., Kavouras I.G., Ferguson S.T., and Koutrakis P. Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurements of particulate and gaseous pollutants. Aerosol Sci Technol 2001: 35: 741–752.

    Article  CAS  Google Scholar 

  • Ebelt S.T., Petkau A.J., Vedal S., Fisher T.V., and Brauer M. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J Air Waste Manage Assoc 2000: 50: 1081–1094.

    Article  CAS  Google Scholar 

  • Gamble J.F. PM2.5 and mortality in long-term prospective cohort studies: cause–effect or statistical associations. Environ Health Perspect 1998: 106: 535–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grufferman S. Complexity and the Hawthorne effect in community trials. Epidemiology 1999: 10: 209–210.

    Article  CAS  Google Scholar 

  • Janssen N.A.H., de Hartog J.J., Hoek G., Brunekreef B., Lanki T., Tomonen K.L., and Pekkanen, J. Personal exposure to fine particulate matter in elderly subjects: relation between personal, indoor, and outdoor concentrations. J Air Waste Manage Assoc 2000: 50: 1133–1143.

    Article  CAS  Google Scholar 

  • Katsouyanni K., Touloum G., Spix C., Schwartz J., Balducci F., Medina S., Rossi G., Wojtyniak B., Sunyer J., Bacharova L., Schouten J.P., Ponka A., and Anderson H.R. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Br Med J 1997: 314: 1658–1670.

    Article  CAS  Google Scholar 

  • Langan L. Sense-Your-World! With Databear Measurers and Other Langan Instruments. Langan Products, Inc., San Francisco, 1996.

    Google Scholar 

  • Last J.M. A Dictionary of Epidemiology. Oxford University Press Inc., New York, 2001.

    Google Scholar 

  • Lee J.-T., Kim H., Hong Y.-C., Kwon H.-J., Schwartz J., and Christiani D.C. Air pollution and daily mortality in seven major cities of Korea, 1991–1997. Environ Res 2000: 84: 247–254.

    Article  CAS  Google Scholar 

  • Lee P.K.H., Brook J.R., Dabek-Zlotorzynska E., and Mabury S.A. Identification of the major sources contributing to PM2.5 observed in Toronto. Environ Sci Technol 2003: 37: 4831–4840.

    Article  CAS  Google Scholar 

  • Leech J.A., Wilby K., McMullen E., and Laporte K. The Canadian human activity pattern survey: report of methods and population surveyed. Chron Dis Can 1996: 17: 118–123.

    CAS  Google Scholar 

  • McGrath J.J. Biological plausibility for carbon monoxide as a copollutant in PM epidemiologic studies. Inhal Toxicol 2000: 12 (Suppl 4): 91–107.

    CAS  PubMed  Google Scholar 

  • Nyberg F., Gustavsson P., Jarup L., Bellander T., Berglind N., Jakobsson R., and Pershagen G. Urban air pollution and lung cancer in Stockholm. Epidemiology 2000: 11: 487–495.

    Article  CAS  Google Scholar 

  • Occupational Safety and Health Administration. Inorganic methods evaluation protocol, Salt Lake Technical Center, USA, 1999.

  • Ogawa & Company USA Inc. NO, NO2, NOx and SO2 sampling protocol using the Ogawa Sampler, USA, 1999.

  • Oglesby L., Kunzli N., Roosli M., Braun-Fahrlander C., Mathys P., Stern W., Jantunen M., and Kousa A. Validity of ambient levels of fine particles as surrogate for personal exposure to outdoor air pollution-results of the European EXPOLIS-EAS Study (Swiss Center Basel). J Air Waste Manage Assoc 2000: 50: 1251–1261.

    Article  CAS  Google Scholar 

  • Ostro B., Lipsett M., Mann J., Braxton-Owens H., and White M. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 2001: 12: 200–208.

    Article  CAS  Google Scholar 

  • Pope C.A.I. Review: Epidemiological basis for particulate air pollution health standards. Aerosol Sci Technol 2000: 32: 4–14.

    Article  CAS  Google Scholar 

  • Pope C.A.I., Hill R.W., and Villegas G.M. Particulate air pollution and daily mortality on Utah's Wasatch Front. Environ Health Perspect 1999: 107: 567–573.

    Article  CAS  Google Scholar 

  • Raaschou-Nielsen O., Hertel O., Thomsen B.L., and Olsen J.H. Air pollution from traffic at the residence of children with Cancer. Am J Epidemiol 2001: 153: 433–443.

    Article  CAS  Google Scholar 

  • Raub J.A., Mathieu-Nolf M., Hampson N.B., and Thom S.R. Carbon monoxide poisoning — a public health perspective. Toxicology 2000: 145: 1–14.

    Article  CAS  Google Scholar 

  • Rodes C., Lawless P.A., Evans J.S., Sheldon L., Williams R.W., Vette A.F., Creason J.P., and Walsh D. The relationship between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenario. J Exp Anal Environ Epidemiol 2001: 11: 103–115.

    Article  CAS  Google Scholar 

  • Rojas-Bracho L., Suh H.H., Oyola P., and Koutrakis P. Measurements of children's exposures to particles and nitrogen dioxide in Santiago, Chile. Sci Total Environ 2002: 287 (3): 249–264.

    Article  CAS  Google Scholar 

  • Samet J.M., Dominici F., Curriero F.C., Coursac I., and Zeger S.L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 2000a: 343: 1742–1749.

    Article  CAS  Google Scholar 

  • Samet J.M., Zeger S.L., Dominici F., Curriero F., Coursac I., Dockery D.W., Schwartz J., and Zanobetti A. The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from air pollution in the United States. Respiratory Report/Health Effects Institute, 2000b, Vol 94, Part 2, pp. 5–70; discussion 71–9.

  • Samoli E., Touloumi G., Zanobetti A., Le Tertre A., Schindler C., Atkinson R., Vonk J., Rossi G., Saez M., Rabczenko D., Schwartz J., and Katsouyanni K. Investigating the dose–response relation between air pollution and total mortality in the APHEA-2 Multicity Project. Occup Environ Med 2003: 60 (12): 977–982.

    Article  CAS  Google Scholar 

  • Sarnat J.A., Schwartz J., Catalano P.J., and Suh H.H. Gaseous pollutants in particulate matter epidemiology: confounders or surrogates? Environ Health Perspect 2001: 10: 1053–1061.

    Article  Google Scholar 

  • Vedal S. Ambient particles and health: lines that divide. J Air Waste Manage Assoc 1997: 47: 551–581.

    Article  CAS  Google Scholar 

  • Williams R., Suggs J., Creason J., Rodes C., Lawless P., Kwok R., Zweidinger R., and Sheldon L. The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: Part 2. Personal exposure assessment associated with an elderly study population. J Exp Anal Environ Epidemiol 2000: 10: 533–543.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Toxic Substances Research Initiative (Project 101). We acknowledge Mary Rutherford (University of Toronto), Ted Waring (University of Ottawa Heart Institute), Kathy Vandemheen (Ottawa Hospital), Sandy Woodhouse (Environment Canada), Gang Lu (Environment Canada), Rochelle Keogh (Environment Canada) for their assistance in conducting this study, and Bernie Beckerman for producing Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R Brook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Sass-Kortsak, A., Purdham, J. et al. Associations between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. J Expo Sci Environ Epidemiol 16, 172–183 (2006). https://doi.org/10.1038/sj.jea.7500446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jea.7500446

Keywords

This article is cited by

Search

Quick links