Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6

ABSTRACT

We studied the pharmacokinetics and QT interval pharmacodynamics of a single 10 mg dose of oral haloperidol in a randomized, double-blind, placebo-controlled, crossover trial of healthy poor (PMs) and extensive (EMs) metabolizers of CYP2D6. There was a statistically significant greater mean QTc on haloperidol (421.6±20.1 ms) than on placebo (408.4±18.5 ms, P=0.0053) occurring 10 h post haloperidol/placebo administration. Men and women had similar ranges of QTc changes from placebo. Despite a statistically significant greater mean elimination half-life (19.1±3.6 vs 12.9±4.0 h, P=0.04) and lower mean apparent oral clearance (12.8±4.1 vs 27.0±11.3 ml/min/kg, P=0.02) of haloperidol in CYP2D6 PMs than in EMs, this exposure change did not translate into marked QTc changes from baseline that could be considered clinically important. Although the magnitude of the mean QTc prolongation on haloperidol relative to placebo is relatively small, it may assume significance in the presence of other risk factors for QT prolongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goff DC, Heckers S, Freudenreich O . Schizophrenia. Med Clin North Am 2001; 85: 663–689.

    Article  CAS  PubMed  Google Scholar 

  2. Brown S . Excess mortality of schizophrenia. A meta-analysis. Br J Psychiatry 1997; 171: 502–508.

    Article  CAS  PubMed  Google Scholar 

  3. Glassman AH, Bigger Jr JT . Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry 2001; 158: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson T, Ditmanson L, Phibbs B . Torsades de Pointes and low-dose haloperidol. Arch Intern Med 1997; 157: 2013–2015.

    Article  CAS  PubMed  Google Scholar 

  5. Metzger E, Friedman R . Prolongation of the corrected QT and Torsades de Pointes cardiac arrhythmia associated with intravenous haloperidol in the medically ill. J Clin Pharmacol 1993; 13: 128–132.

    CAS  Google Scholar 

  6. Bednar MM, Harrigan EP, Anziano RJ, Camm AJ, Ruskin JN . The QT interval. Prog Cardiovasc Dis 2001; 43(Suppl 1): 1–45.

    CAS  PubMed  Google Scholar 

  7. Drici MD, Wang WX, Liu X, Woosley RL, Flockhart DA . Prolongation of QT interval in isolated feline hearts by antipsychotic drugs. J Clin Psychopharmacol 1998; 18: 477–481.

    Article  CAS  PubMed  Google Scholar 

  8. Suessbrich H, Schonherr R, Heinemann SH, Attali B, Lang F, Busch AE . The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br J Pharmacol 1997; 120: 968–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma ND, Rosman HS, Padhi D, Tisdale JE . Torsades de Pointes associated with intravenous haloperidol in critically ill patients. Am J Cardiol 1998; 81: 238–240.

    Article  CAS  PubMed  Google Scholar 

  10. Forsman A, Larsson M . Metabolism of halperidol. Current Ther Res 1978; 24: 567–568 (Ref type: Generic).

    CAS  Google Scholar 

  11. Inaba T, Kovacs J . Haloperidol reductase in human and guinea pig livers. Drug Metab Dispos 1989; 17: 330–333.

    CAS  PubMed  Google Scholar 

  12. Young D, Midha KK, Fossler MJ, Hawes EM, Hubbard JW, McKay G et al. Effect of quinidine on the interconversion kinetics between haloperidol and reduced haloperidol in humans: implications for the involvement of cytochrome P450IID6. Eur J Clin Pharmacol 1993; 44: 433–438.

    Article  CAS  PubMed  Google Scholar 

  13. Pan LP, Wijnant P, De Vriendt C, Rosseel MT, Belpaire FM . Characterization of the cytochrome P450 isoenzymes involved in the in vitro N-dealkylation of haloperidol. Br J Clin Pharmacol 1997; 44: 557–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Llerena A, Alm C, Dahl ML, Ekqvist B, Bertilsson L . Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Ther Drug Monit 1992; 14: 92–97.

    Article  CAS  PubMed  Google Scholar 

  15. Roh HK, Chung JY, Oh DY, Park CS, Svensson JO, Dahl ML et al. Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients. Br J Clin Pharmacol 2001; 52: 265–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Someya T, Suzuki Y, Shimoda K, Hirokane G, Morita S, Yokono A et al. The effect of cytochrome P450 2D6 genotypes on haloperidol metabolism: a preliminary study in a psychiatric population. Psychiatry Clin Neurosci 1999; 53: 593–597.

    Article  CAS  PubMed  Google Scholar 

  17. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho Th et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and biopolar disorder? Mol Psychiatry 2002; 3: 32–37.

    Article  Google Scholar 

  18. Fulop G, Phillips RA, Shapiro AK, Gomes JA, Shapiro E, Nordlie MA . ECG changes during haloperidol and pimozide treatment of Tourette's disorder. Am J Psychiatry 1987; 144: 673–675.

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro E, Shapiro AK, Fulop G, Hubbard M, Mandell J, Nordlie J et al. Controlled study of haloperidol, pimozide and placebo for the treatment of Gilles de la Tourette's syndrome. Arch Gen Psychiatry 1989; 46: 722–730.

    Article  CAS  PubMed  Google Scholar 

  20. Fang J, McKay G, Song J, Remillrd A, Li X, Midha K . In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos 2001; 29: 1638–1643.

    CAS  PubMed  Google Scholar 

  21. Tateishi T, Watanabe M, Kumai T, Tanaka M, Moriya H, Yamaguchi S et al. CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes. Life Sci 2000; 67: 2913–2920.

    Article  CAS  PubMed  Google Scholar 

  22. Yasui N, Kondo T, Otani K, Furukori H, Mihara K, Suzuki A et al. Effects of itraconazole on the steady-state plasma concentrations of halperidol and its reduced metabolite in schizophrinic patients: in vivo evidence of the involvement of CYP3A4 for halopeidol metabolism. J Clin Psychopharmacol 1999; 2: 149–154.

    Article  Google Scholar 

  23. Jann MW, Saklad SR, Ereshefsky L, Richards AL, Harrington CA, Davis CM . Effects of smoking on haloperidol and reduced haloperidol plasma concentrations and haloperidol clearance. Psychopharmacology (Berl) 1986; 90: 468–470.

    Article  CAS  Google Scholar 

  24. Simoda K, Someya T, Morita S, Hirokane G, Yokono A, Takahashi S et al. Lack of impact of CYP1A2 genetic polymorphism (C/A polymorphism at position 734 in intron 1 and G/A polymorphism at position -2964 in the 5′-flanking region of CYP1A2) on the plasma concentration of haloperidol in smoking male Japanese with schizophrenia. Prog Neruopsychopharmacol Biol Psychiatry 2002; 2: 261–265.

    Article  Google Scholar 

  25. Sachse C, Brockmoller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences [see comments]. Am J Hum Genet 1997; 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Woosley RL, Sale M . QT interval: a measure of drug action. Am J Cardiol 1993; 72: 36B–43B.

    Article  CAS  PubMed  Google Scholar 

  27. Malik M . Problems of heart rate correction in assessment of drug-induced QT interval prolongation. J Cardiovasc Electrophysiol 2001; 12: 411–420.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez I, Kilborn M, Liu XK, Pezzullo JC, Woosley RL . Drug-induced QT prolongation in women during the menstrual cycle. JAMA 2001; 285: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in parts by Grants T32-9M 08386, a Pharmacogenetics Research Network Grant (U01-GM61373) and RO1-GM56898-01 from the National Institutes of General Medical Sciences, Bethesda, MD and by the Georgetown University GCRC. Data from this study are deposited in the Pharmacogenetics Knowledge Base (Pharmgkb.org) supported by U01-GM61374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Flockhart.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, M., Tanus-Santos, J., Li, L. et al. Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6. Pharmacogenomics J 3, 105–113 (2003). https://doi.org/10.1038/sj.tpj.6500160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500160

Keywords

This article is cited by

Search

Quick links