Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cebus apella, a nonhuman primate highly susceptible to neuroleptic side effects, carries the GLY9 dopamine receptor D3 associated with tardive dyskinesia in humans

Roskilde

Tardive dyskinesia (TD) is a severe side effect of traditional neuroleptics affecting a considerable number of schizophrenic patients. Accumulating evidence suggests the existence of a genetic disposition to TD and other extra pyramidal symptoms (EPS) most strongly linked to a ser/gly polymorphism in position 9 of the D3 dopamine receptor gene (DRD3). The Cebus apella monkey is the favored animal model to study TD and other EPS because of its high susceptibility to side effects of neuroleptics. We therefore determined the sequence of the DRD3 gene in this species and compared it with that of humans. We found that the highly TD susceptible C. apella monkey (n=21) carries the gly9/gly9 DRD3 genotype that has been associated with TD in humans. Contrarily, C. apella did not carry the ser23 5HT2C allele that has been reported to increase TD susceptibility in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kane JM, Smith JM . Tardive dyskinesia: prevalence and risk factors, 1959 to 1979. Arch Gen Psychiatry 1982; 39: 473–481.

    Article  CAS  Google Scholar 

  2. Weinhold P, Wegner JT, Kane JM . Familial occurrence of tardive dyskinesia. J Clin Psychiatry 1981; 42: 165–166.

    CAS  Google Scholar 

  3. Yassa R, Ananth J . Familial tardive dyskinesia. Am J Psychiatry 1981; 138: 1618–1619.

    Article  CAS  Google Scholar 

  4. Waddington JL, Youssef HA . The expression of schizophrenia, affective disorder and vulnerability to tardive dyskinesia in an extensive pedigree. Br J Psychiatry 1988; 153:376–381.

    Article  CAS  Google Scholar 

  5. Rosengarten H, Schweitzer JW, Friedhoff AJ . Possible genetic factors underlying the pathophysiology of tardive dyskinesia. Pharmacol Biochem Behav 1994; 49: 663–667.

    Article  CAS  Google Scholar 

  6. Muller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T et al. Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 2001; 104: 375–379.

    Article  CAS  Google Scholar 

  7. Pickar D, Rubinow K . Pharmacogenomics of psychiatric disorders. Trends Pharmacol Sci 2001; 22: 75–83.

    Article  CAS  Google Scholar 

  8. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC . Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990; 13: 146–151.

    Article  Google Scholar 

  9. Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 1996; 93: 1945–1949.

    Article  CAS  Google Scholar 

  10. Lannfelt L, Sokoloff P, Martres MP, Pilon C, Giros B, Johnson E et al. Amino acid substitution in the dopamine D3 receptor as a useful polymorphism for investigating psychiatric disorders. Psychiatr Genet 1992; 2: 249–256.

    Article  Google Scholar 

  11. Dubertret C, Gorwood P, Ades J, Feingold J, Schwartz JC, Sokoloff P . Meta-analysis of DRD3 gene and schizophrenia: ethnic heterogeneity and significant association in Caucasians. Am J Med Genet 1998; 81: 318–322.

    Article  CAS  Google Scholar 

  12. Lundstrom K, Turpin MP . Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun 1996; 225: 1068–1072.

    Article  CAS  Google Scholar 

  13. Dubertret C, Gorwood P, Ades J, Feingold J, Schwartz JC, Sokoloff P . Meta-analysis of DRD3 gene and schizophrenia: ethnic heterogeneity and significant association in Caucasians. Am J Med Genet 1998; 81: 318–322.

    Article  CAS  Google Scholar 

  14. Steen VM, Lovlie R, MacEwan T, McCreadie RG . Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry 1997; 2: 139–145.

    Article  CAS  Google Scholar 

  15. Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R et al. Pharmacogenetics of tardive dyskinesia Combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002; 27: 105–119.

    Article  CAS  Google Scholar 

  16. Ishiguro H, Okuyama Y, Toru M, Arinami T . Mutation and association analysis of the 5′ region of the dopamine D3 receptor gene in schizophrenia patients: identification of the Ala38Thr polymorphism and suggested association between DRD3 haplotypes and schizophrenia. Mol Psychiatry 2000; 5: 433–438.

    Article  CAS  Google Scholar 

  17. Segman RH, Lerer B . Genetic factors underlying drug induced tardive dyskinesia. In: Lerer B (ed). Pharmacogenetics of Psychotropic Drugs. Cambrigde University Press: Cambridge, 2002.

    Google Scholar 

  18. Gunne LM, Barany S . Haloperidol-induced tardive dyskinesia in monkeys. Psychopharmacology (Berl) 1976; 50: 237–240.

    Article  CAS  Google Scholar 

  19. Kovacic B, Domino EF . Fluphenazine-induced acute and tardive dyskinesias in monkeys. Psychopharmacology (Berl) 1984; 84: 310–314.

    Article  CAS  Google Scholar 

  20. Domino EF . Induction of tardive dyskinesia in Cebus apella and Macaca speciosa monkeys: a review. Psychopharmacology (Suppl) 1985; 2: 217–223.

    Article  CAS  Google Scholar 

  21. Gunne LM, Barany S . A monitoring test for the liability of neuroleptic drugs to induce tardive dyskinesia. Psychopharmacology (Berl) 1979; 63:195–198.

    Article  CAS  Google Scholar 

  22. Barany S, Haggstrom JE, Gunne LM . Application of a primate model for tardive dyskinesia. Acta Pharmacol Toxicol (Copenh). 1983; 52: 86–89.

    CAS  Google Scholar 

  23. Peacock L, Gerlach J . New and old antipsychotics versus clozapine in a monkey model: adverse effects and antiamphetamine effects. Psychopharmacology 1999; 144: 189–197.

    Article  CAS  Google Scholar 

  24. Segman RH, Heresco-Levy U, Finkel B, Inbar R, Neeman T, Schlafman M et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl) 2000; 152:408–413.

    Article  CAS  Google Scholar 

  25. Segman RH, Ebstein RP, Heresco-Levy U, Gorfine M, Avnon M, Gur E et al. Schizophrenia, chronic hospitalization and the 5-HT2C receptor gene. Psychiatr Genet 1997; 7: 75–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Henrik Bo Hansen DVM for assistance with blood sampling from the C. apella monkeys. The study was supported by grants from the Danish National Psychiatric Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Werge.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werge, T., Elbæk, Z., Andersen, M. et al. Cebus apella, a nonhuman primate highly susceptible to neuroleptic side effects, carries the GLY9 dopamine receptor D3 associated with tardive dyskinesia in humans. Pharmacogenomics J 3, 97–100 (2003). https://doi.org/10.1038/sj.tpj.6500152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500152

Keywords

Search

Quick links