Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenomic analysis of rhIL-11 treatment in the HLA-B27 rat model of inflammatory bowel disease

Abstract

Recombinant human interleukin-11 (rhIL-11) reduces the clinical signs and histological lesions of inflammatory bowel disease (IBD) in transgenic rats expressing the human major histocompatability complex (MHC) class I allele, HLA-B27. To elucidate the pharmacogenomic effects of rhIL-11 in this model, we examined the global gene expression pattern in inflamed colonic tissue before and following rhIL-11 treatment using oligonucleotide microarrays. In total, 175 disease-related genes were identified. Increased expression of genes involved in antigen presentation, cell death and inflammation, and decreased expression of metabolic genes was associated with disease. A total of 27 disease-related genes returned to normal expression levels following rhIL-11 treatment including the MHC class II gene RT1-DMĪ². rhIL-11 induced the expression of four intestinal epithelial growth factors. These gene expression patterns indicate that treatment of inflammatory bowel disease with rhIL-11 affects class II antigen processing and colonic epithelial cell proliferation and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD . Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders Cell 1990 63: 1099ā€“1112

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Keith Jr JC, Albert L, Sonis ST, Pfeiffer CJ, Schaub RG . IL-11, a pleiotropic cytokine: exciting new effects of IL-11 on gastrointestinal mucosal biology Stem Cells 1994 12: (Suppl 1) 79ā€“90

    PubMedĀ  Google ScholarĀ 

  3. Peterson RL, Wang L, Albert L, Keith Jr JC, Dorner AJ . Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease Lab Invest 1998 78: 1503ā€“1512

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Schwertschlag US, Trepicchio WL, Dykstra KH, Keith JC, Turner KJ, Dorner AJ . Hematopoietic, immunomodulatory and epithelial effects of interleukin-11 Leukemia 1999 13: 1307ā€“1315

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Trepicchio WL, Bozza M, Pedneault G, Dorner AJ . Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production J Immunol 1996 157: 3627ā€“3634

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Lentsch AB, Crouch LD, Jordan JA, Czermak BJ, Yun EC, Guo R et al . Regulatory effects of interleukin-11 during acute lung inflammatory injury J Leuko Biol 1999 66: 151ā€“157

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Trepicchio WL, Wang L, Bozza M, Dorner AJ . IL-11 regulates macrophage effector function through the inhibition of nuclear factor-ĪŗB J Immunol 1997 159: 5661ā€“5670

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Redlich CA, Gao X, Rockwell S, Kelley M, Elias JA . IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury J Immunol 1996 157: 1705ā€“1710

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Castagliuolo I, Kelly CP, Qiu BS, Nikulasson ST, LaMont JT, Pothoulakis C . IL-11 inhibits Clostridium difficile toxin A enterotoxicity in rat ileum Am J Physiol 1997 273: G333ā€“G341

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Bozza M, Bliss JL, Dorner AJ, Trepicchio WL . Interleukin-11 modulates Th1/Th2 cytokine production from activated CD4+ T Cells J Interferon Cytokine Res 2001 21: 21ā€“30

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Hill GR, Cooke KR, Teshima T, Crawford JM, Keith Jr JC, Brinson YS et al . Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation J Clin Invest 1998 102: 115ā€“123

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Teshima T, Hill GR, Pan L, Brinson YS, van den Brink MR, Cooke KR et al . IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation J Clin Invest 1999 104: 317ā€“325

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Trepicchio WL, Ozawa M, Walters IB, Kikuchi T, Gilleaudeau P, Bliss JL et al . Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions [published erratum appears in J Clin Invest 2000 105: 396 ] J Clin Invest 1999 104: 1527ā€“1537

    CASĀ  Google ScholarĀ 

  14. Peterson RL, Bozza MM, Dorner AJ . Interleukin-11 induces intestinal epithelial cell growth arrest through effects on retinoblastoma protein phosphorylation Am J Pathol 1996 149: 895ā€“902

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Orazi A, Du X, Yang Z, Kashai M, Williams DA . Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation Lab Invest 1996 75: 33ā€“42

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Fiore NF, Ledniczky G, Liu Q, Orazi A, Du X, Williams DA et al . Comparison of interleukin-11 and epidermal growth factor on residual small intestine after massive small bowel resection J Pediatr Surg 1998 33: 24ā€“29

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Sands BE, Bank S, Sninsky CA, Robinson M, Katz S, Singleton JW et al . Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn's disease Gastroenterology 1999 117: 58ā€“64

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Breban M, Fernandez-Sueiro JL, Richardson JA, Hadavand RR, Maika SD, Hammer RE et al . T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats J Immunol 1996 156: 794ā€“803

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. An SJ, Hansen NJ, Hodel A, Jahn R, Edwardson JM . Analysis of the association of syncollin with the membrane of the pancreatic zymogen granule J Biol Chem 2000 275: 11ā€‰306ā€“11ā€‰311

    ArticleĀ  Google ScholarĀ 

  20. Edwardson JM, An S, Jahn R . The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner Cell 1997 90: 325ā€“333

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Rindler MJ, Hoops TC . The pancreatic membrane protein GP-2 localizes specifically to secretory granules and is shed into the pancreatic juice as a protein aggregate Eur J Cell Biol 1990 53: 154ā€“163

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Hoops TC, Ivanov I, Cui Z, Colomer-Gould V, Rindler MJ . Incorporation of the pancreatic membrane protein GP-2 into secretory granules in exocrine but not endocrine cells J Biol Chem 1993 268: 25ā€‰694ā€“25ā€‰705

    Google ScholarĀ 

  23. Mullock BM, Smith CW, Ihrke G, Bright NA, Lindsay M, Parkinson EJ et al . Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and Is required for late endosome-lysosome fusion Mol Biol Cell 2000 11: 3137ā€“3153

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Burton J, Roberts D, Montaldi M, Novick P, De Camilli P . A mammalian guanine-nucleotide-releasing protien enhances function of yeast secretory protein Sec4 Nature 1993 6411: 464ā€“467

    ArticleĀ  Google ScholarĀ 

  25. Burton JL, Burns ME, Augustine GJ, De Camilli P . Specific interactions of Mss4 with members of the Rab GTPase subfamily EMBO J 1994 13: 5547ā€“5548

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Fujimiya M, Inui A . Peptidergic regulation of gastrointestinal motility in rodents [Review] Peptides 2000 21: 1565ā€“1582

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Okamoto H . The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic Ī²-cells J Hepatobiliary- Pancreat Surg 1999 6: 254ā€“262

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Giddings SJ, Carnaghi LR . The two nonallelic rat insulin mRNAs and pre-mRNAs are regulated coordinately in vivo J Biol Chem 1988 263: 3845ā€“3849

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Devaskar SU, Singh BS, Carnaghi LR, Rajakumar PA, Giddings SJ . Insulin II gene expression in rat central nervous system Regul Pept 1993 48: 55ā€“63

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Giddings SJ, Carnaghi L . Rat insulin II gene expression by extraplacental membranes. A non-pancreatic source for fetal insulin J Biol Chem 1989 264: 9462ā€“9469

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Giddings SJ, Carnaghi LR . Selective expression and developmental regulation of the ancestral rat insulin II gene in fetal liver Mol Endocrinol 1990 4: 1363ā€“1369

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Ostertag EM, Kazazian Jr HH . Biology of mammalian L1 retrotransposons Annu Rev of Genet 2001 35: 501ā€“538

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Braegger CP . Immunopathogenesis of chronic inflammatory bowel disease Acta Paediatrica 1994 83: (Suppl) 18ā€“21

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Lawrance IC, Fiocchi C, Chakravarti S . Ulcerative colitus and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes Hum Mol Genet 2001 10: 445ā€“456

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Selby WS, Janossy G, Mason DY, Jewell DP . Expression of HLA-DR antigens by colonic epithelium in inflammatory bowel disease Clin Exp Immunol 1983 53: 614ā€“618

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Hirv K, Seyfarth M, Uibo R, Kull K, Salupere R, Latza U et al . Polymorphisms in tumour necrosis factor and adhesion molecule genes in patients with inflammatory bowel disease: associations with HLA-DR and DQ alleles and subclinical markers Scand J Gastroenterol 1999 34: 1025ā€“1032

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Annese V, Latiano A, Bovio P, Forabosco P, Piepoli A, Lombardi G et al . Genetic analysis in Italian families with inflammatory bowel disease supports linkage to the IBD1 locusā€”a GISC study Eur J Hum Genet 1999 7: 567ā€“573

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Satsangi J, Welsh KI, Bunce M, Julier C, Farrant JM, Bell JI et al . Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease Lancet 1996 347: 1212ā€“1217

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Mayer L, Eisenhardt D, Salomon P, Bauer W, Plous R, Piccinini L . Expression of class II molecules on intestinal epithelial cells in humans. Differences between normal and inflammatory bowel disease Gastroenterology 1991 100: 3ā€“12

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Hermel E, Monaco JJ . RT1.DMa and RT1.DMb: the rat homologues of H2-DMa and H2-DMb Immunogenetics 1995 42: 446ā€“447

    CASĀ  PubMedĀ  Google ScholarĀ 

  41. Alfonso C, Karlsson L . Nonclassical MHC class II molecules Annu Rev Immunol 2000 18: 113ā€“142

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Ramana CV, Chatterjee-Kishore M, Nguyen H, Stark GR . Complex roles of Stat1 in regulation gene expression Oncogene 2000 19: 2619ā€“2627

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Mellins E, Smith L, Arp B, Cotner T, Celis E, Pious D . Defective processing and presentation of exogenous antigens in mutants with normal HLA class II genes Nature 1990 343: 71ā€“74

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Morris P, Shaman J, Attaya M, Amaya M, Goodman S, Bergman C et al . An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules Nature 1994 368: 551ā€“554

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Weber DA, Evavold BD, Jensen PE . Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM Science 1996 274: 618ā€“621

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Balish E et al . normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis and arthritis in HLA-B27/human Ī²2 microglobulin transgenic rats J Clin Invest 1996 98: 945ā€“953

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Roediger WE . The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 1980 2: 712ā€“715

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Tan S, Hooi SC . Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior Am J Physiol Gastrointest Liver Physiol 2000 278: G308-G320

    ArticleĀ  Google ScholarĀ 

  49. Hodel A, Edwardson JM . Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells Biochem J 2000 350: 637ā€“643

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Alavi K, Prasad R, Lundgren K, Schwartz MZ . Interleukin-11 enhances small intestine absorptive function and mucosal mass after intestinal adaptation J Pediatric Surg 2000 35: 371ā€“374

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Liu Q, Du XX, Schindel DT, Yang ZX, Rescorla FJ, Williams DA et al . Trophic effects of interleukin-11 in rats with experimental short bowel syndrome J Pediatric Surg 1996 31: 1047ā€“1051

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Terazono K, Yamamoto H, Takasawa S, Shiga K, Yonemura Y, Tochino Y et al . A novel gene activated in regenerating islets J Biol Chem 1988 263: 2111ā€“2114

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Kawanami C, Fukui H, Kinoshita Y, Nakata H, Asahara M, Matsushima Y et al . Regenerating gene expression in normal gastric mucosa and indomethacin-induced mucosal lesions of the rat J Gastroenterol 1997 32: 12ā€“18

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Kazumori H, Ishihara S, Hoshino E, Kawashima K, Moriyama N, Suetsugu H et al . Neutrophil chemoattractant 2 Ī² regulates expression of the Reg gene in injured gastric mucosa in rats Gastroenterology 2000 119: 1610ā€“1622

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Johnson LR, McCormack SA, Wang JY . Regulation of gastrointestinal mucosal growth In: Walsh JH (editor) Gastrin Raven Press: New York 1993 pp 285ā€“300

    Google ScholarĀ 

  56. Fukui H, Kinoshita Y, Maekawa T, Okada A, Waki S, Hassan MS et al . Regeneration gene protein may mediae gastric mucosal proliferation induced by hypergastrinemia in rats Gastroenterology 2000 115: 1493ā€“1498

    Google ScholarĀ 

  57. Chiba T, Fukui H, Kinoshita Y . Reg protein: a possible mediator of gastrin-induced mucosal cell growth J Gastroenterol 2000 35: 52ā€“56

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Christa L, Carnot F, Simon MT, Levavasseur F, Stinnakre MG, Lasserre C et al . HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells Am J Physiol 1996 271: G993ā€“G1002

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Playford RJ . Trefoil peptides: what are they and what do they do? J R Coll Physicians London 1997 31: 37ā€“41

    CASĀ  Google ScholarĀ 

  60. Murphy MS . Growth factors and the gastrointestinal tract Nutrition 1998 14: 771ā€“774

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Alison MR, Chinery R, Poulsom R, Ashwood P, Longcroft JM, Wright NA . Experimental ulceration leads to sequential expression of spasmolytic polypeptide, intestinal trefoil factor, epidermal growth factor and transforming growth factor Ī± mRNAs in rat stomach J Pathol 1995 175: 405ā€“414

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Cook GA, Thim L, Yeomans ND, Giraud AS . Oral human spasmolytic polypeptide protects against aspirin-induced gastric injury in rats J Gastroenterol Hepatol 1998 13: 363ā€“370

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Tran CP, Cook GA, Yeomans ND, Thim L, Giraud AS . Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis Gut 1999 44: 636ā€“642

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H et al . Inflammatory disease in HLA-B27 transgenic rats Immunol Rev 1999 169: 209ā€“223

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Breban M, Hammer RE, Richardson JA, Taurog JD . Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment J Exp Med 1993 178: 1607ā€“1616

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Khare SD, Hansen J, Luthra HS, David CS . HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human Ī²2-microglobulin (Ī²2m) double transgenic mice with disrupted mouse Ī²2m J Clin Invest 1996 98: 2746ā€“2755

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Khare SD, Bull MJ, Hanson J, Luthra HS, David CS . Spontaneous inflammatory disease in HLA-B27 transgenic mice is independent of MHC class II molecules: a direct role for B27 heavy chains and not B27-derived peptides J Immunol 1998 160: 101ā€“106

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Boughton-Smith NK, Wallace JL, Morris GP, Whittle BJ . The effects of anti-inflammatory drugs on eicosanoid formation in a chronic model of inflammatory bowel disease in the rat Br J Pharmacol 1998 94: 65ā€“72

    ArticleĀ  Google ScholarĀ 

  69. Greenwood-Van Meerveld B, Tyler K, Keith Jr JC . Recombinant human interleukin-11 modulates mucosal ion transport in the small intestine and colon of normal and HLA-B27 rats in vitro Lab Invest 2000 80: 1269ā€“1280

    ArticleĀ  Google ScholarĀ 

  70. Hill A, Hunter C, Tsung B, Tucker-Kellogg G, Brown E . Genomic analysis of gene expression in C. elegans Science 2000 290: 809ā€“812

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Fenhalls G, Wong A, Bezuidenhout J, van Helden P, Bardin P, Lukey PT . In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas Infect Immun 2000 68: 2827ā€“2836

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RL Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, R., Wang, L., Albert, L. et al. Pharmacogenomic analysis of rhIL-11 treatment in the HLA-B27 rat model of inflammatory bowel disease. Pharmacogenomics J 2, 383ā€“399 (2002). https://doi.org/10.1038/sj.tpj.6500137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500137

Keywords

This article is cited by

Search

Quick links